

• Consider the following figure

Example 1.33 II

Example 1.33 III

- For this language, $\Sigma = \{0\}$. This is called unary alphabets
- The only non-deterministic place is at the start state
- What is the language?

 $\{0^k \mid k \text{ multiples of 2 or 3}\}$

Example 1.35 I

• Fig 1.36

Accept

 ϵ , a, baba, baa can be accepted

• But babba is rejected

Example 1.35 II

See the tree below

• This example is later used to illustrate the procedure for converting NFA to DFA

Definition: NFA I

•
$$(Q, \Sigma, \delta, q_0, F)$$

•
$$\delta: Q \times \Sigma_{\epsilon} \to P(Q)$$

 $P(Q):$ all possible subsets of Q

•
$$\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\}$$

$$Q = \{1, 2, 3\}$$

$$egin{aligned} & \mathcal{P}(\mathcal{Q}) = \ & \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\} \} \end{aligned}$$

Definition: NFA II

• Thus P(Q) is a set of sets

Example 1.38 I

- $Q = \{q_1, ..., q_4\}$
- $\Sigma = \{0,1\}$
- Start state: q₁
- $F = \{q_4\}$
- δ:

Example 1.38 II

- Every element in the table is a set
- Note that DFA does not allow $\emptyset.$ In NFA, "no link" means the output of δ is \emptyset
- So seriously speaking, a DFA is not an NFA. Need modifications to satisfy the NFA definition

N accepts w I

• First we have that w can be written as

$$w = y_1 \dots y_m$$

where $y_i \in \Sigma_{\epsilon}$

• A sequence $r_0 \ldots r_m$ such that

•
$$r_0 = q_0$$

• $r_{i+1} \in \delta(r_i, y_{i+1})$
• $r_m \in F$

• So *m* may not be the original length (as y_i may be ϵ)