Nondeterminism

- Deterministic algorithm:
 Given current state and current input, next step is known
- Nondeterministic algorithm:
 Several choices are possible
- They will be respectively called
 DFA: deterministic finite automata
 and
 NFA: non-deterministic finite automata
- Fig 1.27
\(\delta \) is not a function any more: \(\delta(q_1, 1) = q_1 \) or \(q_2 \)

\(\epsilon \) between \(q_2 \) and \(q_3 \): \(q_2 \) can move to \(q_3 \) without any input
How to run a string? We can separately consider different situations.

It’s like we have a kind of parallel machines.

ex: 010110

Fig 1.29
Nondeterminism IV
After processing the string, if one path reaches an accept state, then the string is accepted.

Note that we handle the ϵ edge immediately.

So each layer of the tree is the collection of states that can be reached up to the current input character.
Example 1.30 I

- Strings with 1 in 3rd position from the end
- Strings 00100, 0100 are accepted, but 0010 is not
- Fig 1.31

The only nondeterministic place is at q_1
Example 1.30 II

- At q_1 we nondeterministically guess if we are already at the third position from the end.
- Another difference is that at q_4, there are no out-links.
 This is crucial. It ensures that at q_4 we have 1 in the 3rd position from the end and can accept the string.
- Can we recognize this language by a DFA?
- An interesting issue is about the relationship between DFA and NFA.
- They are equivalent. We will formally explain this later.
Example 1.30 III

- For this example we can directly design a DFA for the language
- Fig 1.32
Example 1.30 IV
Example 1.30 V

- Idea of this diagram: using 8 states to record the past 3 digits so far
- Accept states: any q_{1xx} can be an accept state
- The idea is simple. But why can we use 000 as the start state?
- Looks like we need other nodes:

 ___, _0, _1, _01, _10, _00, _11

- Then we see that the path is the same as if we start from 000
For example,

\[___ \rightarrow __0 \rightarrow _01 \]
Consider a modification of the NFA in example 1.30

$q_2 \rightarrow q_3 : 0, 1 \Rightarrow 0, 1, \varepsilon$

$q_3 \rightarrow q_4 : 0, 1 \Rightarrow 0, 1, \varepsilon$
A modification of example 1.30 II

What is the language: at least one of the last three characters is 1

How about DFA for this language?
Except q_{000}, all others are in F