What is a computer I

- Computers are complicated, but we can construct idealized computational models to do analysis
- Finite automata are the idealized model that we will discuss
- Example: automatic door Fig 1.1

What is a computer II

• Rules:

When it moves, it cannot hit people

- We can use a simple graph to summarize all operations
- For example, if the door is open and some are in the front area, then the door should remain to be open

What is a computer III

• Fig 1.2

- Single bit memory (open and closed)
- Automaton (single) automata (plural)
- This is a Latin word from Greek

Examples of automata I

• Fig 1.4: a state diagram 0 1 q_1 q_2 q_3 0, 1

states: q_1, q_2, q_3 start state: q_1 accept state q_2 (double circle)

Examples of automata II

• Example: running an input string 1101

$$q_1
ightarrow q_2
ightarrow q_2
ightarrow q_3
ightarrow q_2$$

This string is accepted

• Example: running 10

$$q_1
ightarrow q_2
ightarrow q_3$$

 q_3 is not an accept state, so the string is rejected

 What are all strings accepted? We will say what this set is Unfortunately, it may not be always easy to know the set

Formal definition I

We formally define a state diagram as a 5-tuple $(Q, \Sigma, \delta, q_0, F)$

- Q: set of states. It is a finite set
- Σ: alphabet (i.e., set of characters in input string). It is a finite set
- $\delta: Q \times \Sigma \rightarrow Q$: transition function

This is the most complicated part of the definition. We explain the transition function by an example later

• $q_0 \in Q$: start state

Formal definition II

- $F \subset Q$: set of accept states
- For the example given above,

$$egin{aligned} \mathcal{Q} &= \{ q_1, q_2, q_3 \} \ \Sigma &= \{ 0, 1 \} \ q_0 &= q_1 \ F &= \{ q_2 \} \end{aligned}$$

• The δ function:

	0	1
q_1	q_1	q_2
q 2	q 3	q ₂
q_3	q_2	q_2

Formal definition III

• Language of *M*: all strings accepted by *M*. Denoted as

$$A=L(M)$$

 $A = \{w \mid w : \text{ at least one 1, even } \# \text{ 0} \$ after the last 1 $\}$

Example 1.7 |

- $M = (\{q_1, q_2\}, \{0, 1\}, \delta, q_1, \{q_2\})$
- What is L(M)? Anything ends with 1
- How to think about this ?

Example 1.7 II

Before the last input character, we must be at q₁ or q₂. Then only if the last is 1 we can reach q₂ to get accepted