Mathematical notions I

- Set
 Omitted
- Sequence and tuples
 - Sequence: Objects in order

$$(7, 21, 57) \neq (57, 7, 21)$$

• Repetition

set :
$$\{7, 21, 57\} = \{7, 7, 21, 57\}$$

sequences : $(7, 21, 57) \neq (7, 7, 21, 57)$

Mathematical notions II

- Tuples: finite sequence (7,21,57): 3-tuple
- Cartesian product:

$$A = \{1, 2\}, B = \{x, y\}$$

$$A \times B = \{(1, x), (1, y), (2, x), (2, y)\}$$

- Function: single output
- Relation: scissors-paper-stone

beats	scissors	paper	stone
scissors	F	Т	F
paper	F	F	Т
stone	Т	F	F

Mathematical notions III

- Equivalence relation
 - reflexive

 $\forall x, xRx$

symmetric

 $xRy \Leftrightarrow yRx$

 $xRy, yRz \Rightarrow xRz$

e.g. "="

Mathematical notions IV

• Example:
$$i \equiv_7 j$$
 if $0 = i - j \mod 7$

$$i - i \mod 7 = 0$$

$$i - j = 7a, j - i = -7a$$

$$i - j = 7a, j - k = 7b$$

$$\Rightarrow i - k = 7(a + b)$$

Graph
 Undirected

$$\bigcirc -\bigcirc -\bigcirc$$

Directed

Mathematical notions V

$$\bigcirc \rightarrow \bigcirc \rightarrow \bigcirc$$

Nodes (vertices)

- Edges: connection between nodes
 Degree = # edges at a node
 Subgraph: G is subgraph of H if
 - G is a graph
 - $node(G) \subset node(H)$
 - edge(G) = subset of edge(H) connecting node(G)

In our example,

Mathematical notions VI

is a subgraph, but

is not

- Strings and languages
 - alphabet: {0,1}
 - string: 1001
 - language: set of strings
- Boolean logic
 - true and false

Mathematical notions VII

- 0 (false) and 1 (true)
- $0 \land 0 = 0, 0 \lor 0 = 0, \neg 0 = 1$ (negation operation)
- xor \otimes

$$\begin{array}{l} 0\otimes 0=0\\ 0\otimes 1=1\\ 1\otimes 0=1\\ 1\otimes 1=0 \end{array}$$

implication

Mathematical notions VIII

$$\begin{array}{c|c|c|c|c|c|c|c|c|} P & Q & P \to Q \\ \hline 0 & 0 & 1 & \\ 0 & 1 & 1 & \\ 1 & 0 & 0 & \\ 1 & 1 & 1 & \\ \end{array}$$

The above is called a truth table • Why

$$P=0, Q=1,$$
 then $P
ightarrow Q=1?$

Consider

$$\mathsf{rainy} \to \mathsf{wet} \; \mathsf{land}$$

Mathematical notions IX

If not rainy, saying rainy implies wet land is ok.
•
$$P \to Q \equiv \neg P \lor Q$$

 $\begin{array}{c|c}
P & Q & P \to Q & \neg P & \neg P \lor Q \\
\hline
0 & 0 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 1 \\
\end{array}$

Proof I

• Direct proof:

$$A \rightarrow B$$

• Proof by contradiction

Proof II

 Example 1: Every graph ⇒ sum of degrees is even
 An example:

- $\# \ \text{degrees} = 1 + 2 + 1 = 4$
- Each edge: 2 nodes

total # degrees = $2 \times \#$ edges

What is the left side of the implication? It's the definition of graphs

• Example 2: $\sqrt{2}$ is irrational

Proof III

• The implication

Definition of rational numbers $\Rightarrow \sqrt{2}$ is not rational

That is,

If a rational number is ... $\Rightarrow \sqrt{2}$ is not rational

The opposite is

If $\sqrt{2}$ is rational

 \Rightarrow The rational number cannot be defined as ...

Proof IV

• By definition, $\sqrt{2}$ is rational means that

$$\sqrt{2} = \frac{m}{n}$$

and *m*, *n* have no common factor • Then

$$2n^2 = m^2$$

Looks impossible. But how to write this formally?

• First we prove that *m* must be even. This is also proof by contradiction

Proof V

If *m* is not even,

$$m=2k+1.$$

Then
$$m^2 = 4(k^2 + k) + 1$$
 is not even and $m^2 = 2n^2$

does not hold.

Proof VI

• Now suppose *m* is even

$$m = 2k$$

Then

$$n^2 = 2k^2$$

- By the same argument, *n* is even
- Thus *m*, *n* have a common factor 2 and there is a contradiction