Mathematical notions I

- Set
 - Omitted
- Sequence and tuples
 - Sequence: Objects in order

 \[(7, 21, 57) \neq (57, 7, 21)\]
- Repetition

 set: \(\{7, 21, 57\} = \{7, 7, 21, 57\}\)

 sequences: \((7, 21, 57) \neq (7, 7, 21, 57)\)
Mathematical notions II

- **Tuples**: finite sequence

 \((7, 21, 57)\): 3-tuple

- **Cartesian product**:

 \[
 A = \{1, 2\}, \quad B = \{x, y\}
 \]

 \[
 A \times B = \{(1, x), (1, y), (2, x), (2, y)\}
 \]

- **Function**: single output

- **Relation**: scissors-paper-stone

 \[
 \begin{array}{c|ccc}
 \text{beats} & \text{scissors} & \text{paper} & \text{stone} \\
 \hline
 \text{scissors} & F & T & F \\
 \text{paper} & F & F & T \\
 \text{stone} & T & F & F \\
 \end{array}
 \]
Equivalence relation

1. reflexive
 \[\forall x, xRx \]

2. symmetric
 \[xRy \iff yRx \]

3. transitive
 \[xRy, yRz \implies xRz \]

E.g. “=”
Example: $i \equiv_7 j$ if $0 = i - j \mod 7$

\[
i - i \mod 7 = 0
\]

\[
i - j = 7a, j - i = -7a
\]

\[
i - j = 7a, j - k = 7b
\]

\[
\Rightarrow i - k = 7(a + b)
\]

Graph

Undirected

Directed
Nodes (vertices)

- Edges: connection between nodes
- Degree = \# edges at a node

Subgraph: G is subgraph of H if
- G is a graph
- node(G) ⊂ node(H)
- edge(G) = subset of edge(H) connecting node(G)

In our example,
is a subgraph, but

is not

- **Strings and languages**
 - alphabet: \{0, 1\}
 - string: 1001
 - language: set of strings

- **Boolean logic**
 - true and false
0 (false) and 1 (true)
\[0 \land 0 = 0, \ 0 \lor 0 = 0, \ \neg 0 = 1\] (negation operation)
xor \[\otimes\]

\[0 \otimes 0 = 0\]
\[0 \otimes 1 = 1\]
\[1 \otimes 0 = 1\]
\[1 \otimes 1 = 0\]

implication
The above is called a truth table

Why

$$P = 0, \ Q = 1, \ \text{then} \ P \rightarrow Q = 1?$$

Consider

rainy \rightarrow wet land
If not rainy, saying rainy implies wet land is ok.

\[P \rightarrow Q \equiv \neg P \lor Q \]

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Proof I

- Direct proof:
 \[A \rightarrow B \]

- Proof by contradiction
 \[\neg B \rightarrow \neg A \]

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \rightarrow Q$</th>
<th>$\neg Q$</th>
<th>$\neg P$</th>
<th>$\neg Q \rightarrow \neg P$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Example 1:
Every graph \Rightarrow sum of degrees is even
- An example:
 \[\circ - \circ - \circ \]
 \[\# \text{ degrees} = 1 + 2 + 1 = 4 \]
- Each edge: 2 nodes
 \[\text{total } \# \text{ degrees} = 2 \times \# \text{ edges} \]

What is the left side of the implication? It’s the definition of graphs

Example 2: $\sqrt{2}$ is irrational
Proof III

- The implication

 Definition of rational numbers

 \[\Rightarrow \sqrt{2} \text{ is not rational} \]

 That is,

 If a rational number is ...

 \[\Rightarrow \sqrt{2} \text{ is not rational} \]

 The opposite is

 If \(\sqrt{2} \) is rational

 \[\Rightarrow \text{The rational number cannot be defined as } \ldots \]
By definition, $\sqrt{2}$ is rational means that

$$\sqrt{2} = \frac{m}{n}$$

and m, n have no common factor

Then

$$2n^2 = m^2$$

Looks impossible. But how to write this formally?

First we prove that m must be even. This is also proof by contradiction
If m is not even,

\[m = 2k + 1. \]

Then

\[m^2 = 4(k^2 + k) + 1 \]

is not even and

\[m^2 = 2n^2 \]

does not hold.
Proof VI

Now suppose m is even

$$m = 2k$$

Then

$$n^2 = 2k^2$$

By the same argument, n is even

Thus m, n have a common factor 2 and there is a contradiction