
Introduction to the Theory of Computation 2022 — Midterm 2

Solutions

Problem 1 (25 pts). Suppose that we operate a burger shop and use the following rules to produce
hamburgers.

H → bCb

C → mC | CbC | ε
(1)

where we denote

H := hamburger,

C := content,

b := bread,

m := meat.

If we collect the rules (1) as a set R, then we can use a context-free grammar

(V = {H,C},Σ = {b,m}, R, S = H) (2)

to describe a hamburger language.

(a) (10 pts) Convert the grammar to a PDA by the procedure in Lemma 2.21 of the textbook (in our
slides chap2 PDA3.pdf.)

(b) (10 pts) Convert the grammar to CNF by the procedure in Theorem 2.9 of the textbook (in our
slides chap2 CNF2.pdf.)

(c) (5 pts) Is a Big Mac
bmbmb

ambiguous under our hamburger context-free grammars (2)?

Solution.

(a) Please see the following diagram.

1

q0

q1

q2q3 q4 q5

q6

q7

q8

ε, ε→ $

ε, ε→ H

ε, $→ ε ε,H → b ε, ε→ C

ε, ε→ b

ε, C → C

ε, ε→ m

ε,C → C

ε, ε→ bε, ε→ C

ε, C → ε
m,m→ ε
b, b→ ε

(b) Add S0 → H

S0 →H
H →bCb
C →mC | CbC | ε

Remove C → ε

S0 →H
H →bCb | bb
C →mC | m | CbC | Cb | bC | b

Remove S0 → H

S0 →bCb | bb
C →mC | m | CbC | Cb | bC | b

Add B → b

S0 →BCB | BB
C →mC | m | CBC | CB | BC | b
B →b

2

Add M → m

S0 →BCB | BB
C →MC | m | CBC | CB | BC | b
B →b
M →m

Remove BCB

S0 →UB | BB
C →MC | m | CBC | CB | BC | b
B →b
M →m
U →BC

Remove CBC

S0 →UB | BB
C →MC | m | CU | CB | BC | b
B →b
M →m
U →BC

(c) Here is the leftmost derivation.

H ⇒bCb
⇒bmCb
⇒bmCbCb
⇒bmbCb
⇒bmbmCb
⇒bmbmb

However, there exists another leftmost derivation.

H ⇒bCb
⇒bCbCb
⇒bmCbCb
⇒bmbCb
⇒bmbmCb
⇒bmbmb

Therefore, the Big Mac
bmbmb

is ambiguous under our hamburger context-free grammar.

Problem 2 (20 pts). Consider the alphabet Σ = {0, 1} and the language

A = {0m1n | 0.5n ≤ m ≤ 1.5n}

3

(a) (5 pts) Let m,n be nonnegative integers and c1, . . . , cn be integers with ci ∈ {1, 2, 3} for each
1 ≤ i ≤ n. Show that

0.5n ≤ m ≤ 1.5n if and only if there exist c1, c2, . . . , cn such that c1 + c2 + . . .+ cn = 2m.

You need to prove both the “if” and “only if” directions.

(b) (10 pts) Based on the idea from (a), design a PDA with ≤ 7 states to recognize A. The stack
alphabet is restricted to be

Γ = {0, $}.

Please finish the diagram based on the following one to get full points.

q1 q2 q3 q4

q5 q6 q7

ε, ε→ $ ε, ε→ ε ε, $→ ε

You must briefly explain the design of your diagram.

(c) (5 pts) Following page 5 of slide “chap2 PDA2.pdf”, please simulate your PDA in the previous
subproblem on the two strings “001” and “011” by drawing the corresponding simulation trees.
Then determine whether the PDA accepts the two strings according to your simulation.

Solution.

(a) For the “if” direction, since ci ∈ {1, 2, 3}, we have

n ≤ c1 + · · ·+ cn = 2m ≤ 3n,

which gives 0.5n ≤ m ≤ 1.5n.

As for the “only if” direction, we show the existence by construction. For n ≤ 2m < 2n, we may
let (c1, . . . , cn) to be any combination of (2n − 2m) 1’s and (2m − n) 2’s. For 2n ≤ 2m ≤ 3n, we
may let (c1, . . . , cn) to be any combination of (3n− 2m) 2’s and (2m− 2n) 3’s.

Common mistake: For the “only if” direction, we need to prove the existence of c1, . . . , cn.

Some simply say that c1 + · · · cn can be any integer between n and 3n, but you need a proof on that.
Some try to prove the opposite statement. The opposite statement of the right-hand side is

∀c1, . . . , cn, c1 + · · ·+ cn 6= 2m.

But then it is unclear how to prove that 0.5n ≤ m ≤ 1.5n is false.

(b) The diagram is shown as the following:

4

https://www.csie.ntu.edu.tw/~cjlin/courses/comptheory2022/slides/chap2_PDA2.pdf

q1 q2 q3 q4

q5 q6 q7

ε, ε→ $ ε, ε→ ε ε, $→ ε

0, ε→ 0

ε, ε→ 0

1, 0→ ε

1, 0→ ε

ε, 0→ ε

ε, 0→ ε

ε, 0→ ε

For q2 and q5, the PDA pushes two 0’s to the stack upon reading an input 0. Then the PDA
nondeterministically guess whether the input has completed reading 0’s. Then for q3, q6, q7, upon
receiving an input 1, the PDA nondeterministically pops one, two, or three 0’s from the stack via
the path q3 → q3, q3 → q6 → q3, or q3 → q6 → q7 → q3, respectively. In the end, we check whether
the top of the stack is the $ pushed in the beginning.

(c) For “001”:

q1∅ q2{$} q3{$} q4∅

q5{0, $} q2{0, 0, $} q3{0, 0, $}

q5{0, 0, 0, $} q2{0, 0, 0, 0, $} q3{0, 0, 0, 0, $}

q3{0, 0, 0, $} q6{0, 0, 0, $} q3{0, 0, $} q7{0, 0, $} q3{0, $}

0

0

1

Since no branch stops at an accepting state after processing the input strings, “001” is rejected.

For “011”:

q1∅ q2{$} q3{$} q4∅

q5{0, $} q2{0, 0, $} q3{0, 0, $}

q3{0, $} q6{0, $} q3{$} q7{$} q4∅

q3{$} q6{$} q4∅

0

1

1

After processing the last input character, there’s a branch stopping at q4, so “011” is accepted.

Common mistake: You cannot just show the path that leads to the acceptance or rejection.

5

Problem 3 (15 pts). Consider the following PDA P with Σ = {0, 1} and Γ = {0}:

q1 q2

0, ε→ 0

1, 0→ ε

1, 0→ ε

(a) (5 pts) What’s the language recognized by P?

(b) (5 pts) Convert P to P ′ satisfing the three conditions mentioned in page 2 of “chap2 PDA4.pdf”
using the corrected procedure taught in class. You are allowed to extend Γ up to a 3-member
set, e.g, {0, $,∆}. Besides, the number of states should be no more than 6 after the conversion.
(Your states should be called q0, q1, . . . , q5 to make the notation simpler.)

(c) (5 pts) Based on (b), convert P ′ to a CFG by using the procedure in Lemma 2.27 of the textbook.
For simplicity, you only need to write each Apq → aArsb rule. The rules Apq → AprArq and App → ε
are not needed. In order to prepare for Apq → aArsb rules, please give table(s) for each stack
alphabet t pushed/popped, similar to what we had in slides.

Solution.

(a) L(P) = {0m1n | m ≥ n ≥ 0}.

(b) The diagram is like the following:

q0 q1 q2

q3q4q5

ε, ε→ $

0, ε→ 0

1, 0→ ε

1, 0→ ε

ε, ε→ ∆ ε, ε→ ∆

ε,∆→ ε

ε, 0→ ε

ε, $→ ε

States q0, q4 and q5 are used to satisfy the first and the second conditions: single accept state and
empty stack before accepting. Note that when adding q4 (which corresponds to qpop in the slide),
additional ε→ ε link would be generated, so we need q3 to satisfy the third condition: either push
or pop in each transition.

Alternative Solution:

6

https://www.csie.ntu.edu.tw/~cjlin/courses/comptheory2022/slides/chap2_PDA4.pdf

q0 q1 q2 q3

q4

ε, ε→ $

0, ε→ 0

1, 0→ ε

1, 0→ ε

ε, 0→ ε

ε, 0→ ε

ε, 0→ ε

ε, $→ ε
ε, $→ ε

ε, $→ ε

(c) The rules are as the following:

• t = ∆:
p r s q a b rules
1 3 3 4 ε ε A14 → A33

2 3 3 4 ε ε A24 → A33

• t = $:
p r s q a b rules
0 1 4 5 ε ε A05 → A14

• t = 0:

p r s q a b rules
1 1 1 2 0 1 A12 → 0A111
1 1 2 2 0 1 A12 → 0A121
1 1 4 4 0 ε A14 → 0A14

Alternative Solution:

• u = 0:

p r s q a b rules
1 1 1 2 0 1 A12 → 0A111
1 1 2 2 0 1 A12 → 0A121
1 1 1 3 0 ε A13 → 0A11

1 1 2 3 0 ε A13 → 0A12

1 1 3 3 0 ε A13 → 0A13

• u = $:

p r s q a b rules
0 1 1 4 ε ε A04 → A11

0 1 2 4 ε ε A04 → A12

0 1 3 4 ε ε A04 → A13

Problem 4 (20 pts). Consider the language

L = {w ∈ {0, 1}∗ | w contains 01101}.

(a) (10 pts) Give the diagram of a PDA that recognizes L with at most four states. You should use
Σ = Γ = {0, 1} for your PDA.

(b) (10 pts) Intuitively, the language L can easily also be recognized by an NFA. Here we discuss the
relation of PDA and NFA. Suppose

P = (Q,Σ,Γ, δ, q0, F)

7

is a PDA that

uses only a finite amount of stack cells, say m cells, in processing any input string. (3)

In other words, P is still a normal PDA with infinite stack space, but P is assumed to use only
a finite amount of stack cells due to its design. For example, the PDA in subproblem (a) can be
designed to use a finite number of stack cells.

We would like to formally define an NFA

N = (Q′,Σ, δ′, q′0, F
′)

in terms of Q,Σ,Γ, δ, q0 such that N recognizes the same language as P .

To formally represent the stack contents, we use strings over Γ where the left most character is the
top of stack. For example, if the machine pushed 0 first and 1 later, the stack content is represented
with the string 10. Using this notation, all possible stack contents that uses at most m cells can be
expressed as

S = {s ∈ Γ∗ | |s| ≤ m}.
We can then define the set of states for the NFA to be

Q′ = Q× S.

Please finish our construction by giving the definition of δ′, q′0 and F ′ (you are not required to
prove the equivalence formally).

Specifically, the transition function of the NFA is now

δ′ : Q′ × Σε → P (Q′).

Thus for any (q, s) ∈ Q′ and a ∈ Σε, what is δ′((q, s), a)?

Solution.

(a) This problem can easily be recognized by an NFA which non-deterministically start to match for
01101 and then stay accepted. However, that would require 6 states. Since PDA has an extra stack
that can be used to store “states”, this allows us to do it with only four states:

q0 q1 q2 q3

0, ε → ε
1, ε→ ε

0, ε→ 0

1, 0→ 1

1, 1→ 0

0, 0→ 1

1, 1→ ε

0, ε → ε
1, ε→ ε

We use the following combination of state and stack to record the matching process:

state stack match process
q0 {} no match yet
q1 {0} 0
q1 {1} 01
q2 {0} 011
q2 {1} 0110
q3 {} 01101

8

(b) Let s denote the whole stack content and si for the ith cell of the stack. Then, the transition
function of the NFA transitions according to the state and stack content:

∀(q, s) ∈ Q′, a ∈ Σε

δ′((q, s), a) =

{
A(q, a, s) ∪B(q, a, s) if |s| > 0

A(q, a, s) otherwise

where

A(q, a, s) = {(q′, xs) | (q′, x) ∈ δ(q, a, ε) and |xs| ≤ m}
B(q, a, s) = {(q′, xs2 . . . s|s|) | (q′, x) ∈ δ(q, a, s1)}

In the definition above, A is the set of states reached without consuming stack symbols, while B is
the states reached by consuming the top of the stack. Note that in the definition of A, we do not
include those transitions that makes |xs| > m since we need (q′, xs) to be in Q′. By assumption (3),
the PDA would never have |xs| > m so these transitions can indeed be safely excluded from our δ′.

The starting state of the NFA should be the starting state of the PDA with an empty stack:

q′0 = (q0, ε)

Finally, the accept state of the NFA should be the accept state of the PDA with any stack content.
Therefore, we have

F ′ = {(q, s) | q ∈ F, s ∈ S}.

This result tell us that the reason why PDA is more powerful than NFA (and DFA) is not that it
has stack but the stack space is unlimited.

Problem 5 (20 pts). Let x and y be two string such that

x = x1x2 . . . xn and y = y1y2 . . . ym, where xi, yi ∈ {0, 1}.

We define the Kronecker product of x and y, denoted as x⊗ y, to be the string

(x1 · y) ◦ (x2 · y) ◦ . . . ◦ (xn · y).

In the above definition, ◦ denotes concatenation and xi · y is defined as multiplying each character in y
by xi. When either x or y is ε, we define x⊗ y = ε.

For example, we have
01⊗ 101 = (0 · 101) ◦ (1 · 101) = 000101.

(a) (15 pts) In this problem, you are required to design a two-tape Turing machine that calculates the
Kronecker product. The machine starts with the tape content:

tape1 :x#y t . . .
tape2 : t . . .

and it should end with the tape content:

tape1 :x#y t . . .
tape2 :x⊗ y t . . .

9

Following the textbook, we define the two-tape TM’s tape to be only infinite on the right side. Also,
the tape heads are allowed to move right, move left or stay. The machine can assume the input
string is properly in the form x#y where x, y ∈ {0, 1}∗ (i.e., the machine does not have to check the
format), and the heads are initialized at the start of the tapes as usual.

You only have to give the diagram. For specifying the transitions, please follow the notation used
in lecture slides “chap3 multitapeTM1.pdf”. Moreover, you can simplify the diagram by using
notations like {

{0, 1,#} → 1, R
t → S

if the first tape reads any character in {0, 1,#}, writes 1 and goes right, while the second tape reads
t and stays.

The state qreject and the edges to qreject can be ignored. The machine should accept after x ⊗ y is
constructed. The machine should use

Σ = {0, 1,#} and Γ = {0, 1,#,t}

and the number of states should be less than or equal to 7 (including qaccept and qreject). (Hint: Make
good use of the second tape to reduce the number of states.)

(b) (5 pts) Simulate the machine on the string

01#10

and show the configuration at each step. Multiple steps that involve only head movements (no state
or tape change) can be condensed into one step.

Solution.

(a) We provide the diagram with two different notations. The first one specify the rule for tape 1 and
tape 2 in the first and second line:

10

q0 q1

q2

q3

q4

qaccept

{
1→ t, R
t → 1, S

,{
0→ t, R
t → 0, S {

{0, 1} → R
{0, 1} → S

{ #
→
R

0
→
t,
S

{
#
→
R

1→
t, S

{
0→ R
t → 0, R

,

{
1→ R
t → 1, R

{
t →

L
t →

0, S

{ t → Lt → 1,
S

{
{0, 1} → R
t → 0, R

{
Σ→ L
{0, 1} → S{

#→ S
t → S

{
t → 0, R
0→ t, S ,

{
t → 1, R
1→ t, S

For the design of q1, q2 and q4, we can also do:

11

q1

q2

q3

{ #
→
R

0
→
S

{
{0, 1} → R
{t, 0} → 0, R

{
#
→
R

1→
S

{
0→ R
{t, 1} → 0, R

,

{
1→ R
{t, 1} → 1, R

At q0, we copy the current character in x to the second tape and mark its position with t. At q1,
we move the head of first tape to the # in the middle. Then, according to the character we copied
earlier, we transition to either q2 or q3, where we scan through y and calculate xi · y on the second
tape. When y ends, the machine goes to q4 while storing xi onto the second tape again. At q4, the
machine restores the head of the first tape back to the position of xi, which was marked with t.
Then, we restore xi from the second tape and move to the next character of x. If there are more
characters of x, the machine repeats the steps above. Otherwise, it accepts.

Common mistake: We require that contents in tape 1 are not changed.

(b)

q001#10t
q0t

=⇒ tq11#10t
q10t

=⇒ t1q1#10t
q10t

=⇒ t1#q210t
q2t

=⇒ t1#1q20t
0q2t

=⇒ t1#10q2t
00q2t

=⇒ t1#1q40t
00q40t

=⇒ · · · =⇒ q4 t 1#10t
00q40t

=⇒ 0q01#10t
00q0t

=⇒ 0 t q1#10t
00q11t

=⇒ 0 t#q310t
00q3t

=⇒ 0 t#1q30t
001q3t

=⇒ 0 t#10q3t
0010q3t

=⇒ 0 t#1q40t
0010q41t

=⇒ · · · =⇒ 0q4 t#10t
0010q41t

=⇒ 01q0#10t
0010q0t

=⇒ accept

12

