
Introduction to the Theory of Computation 2022 — Midterm 1

Solutions

Problem 1 (20 pts). With the alphabet

Σ = {0, 1},

we consider the languages
L1 = {w | sum(w) = 1}

and
L2 = {w | w ends with 1},

where we define
sum(w) = w1 + w2 + · · ·+ wn if w = w1w2 . . . wn.

(a) (5 pts) Give NFAs respectively for L1 and L2, each of which has ≤ 2 states. Then, follow the
procedure in our slides “chap1 NFA4.pdf” from page 8 to page 11 (Theorem 1.47 in our textbook)
to give the NFA that recognizes L1 ◦ L2. Note that you need simplify the NFA such that the final
NFA has ≤ 3 states.

(b) (5 pts) Convert your NFA in (a) to a DFA by the procedure in our slides “chap1 NFA3.pdf” from
page 3 to page 9 (Theorem 1.39 in our textbook.) After that, show a figure without unused states.

(c) (10 pts) Prove that L1 ◦ L2 is equivalent to the language

A = {w | sum(w) ≥ 2 and w ends with 1}

by showing that
L1 ◦ L2 ⊆ A

and
A ⊆ L1 ◦ L2.

Solution.

(a) Let us begin from the NFAs of L1 and L2 first. To recognize L1, we construct the following NFA.

q0 q1

0

1

0

1



For L2, we use

q0 q1

0,1

1

to recognize it. Hence, we can apply

q0 q1 q2 q3

0

1

0

ε

0,1

1

to recognize L1 ◦ L2, and further simplify it to

q0 q1 q2

0

1

0,1

1

(b) Let us list all the elements of P (Q) in the beginning.

q0 q1 q2

q01 q02 q12 q023

q∅

Then, we find out all possible paths.

q0 q1 q2

q01 q02 q12 q012

q∅

0

1

0

1

0

0,1
0,1

0 1

0
1

1

0

1
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Next, we decide the initial and accept states.

q0 q1 q2

q01 q02 q12 q012

q∅

0

1

0

1

0

0,1
0,1

0 1

0
1

1

0

1

In the final, we remove unused states to simplify the diagram.

q0 q1 q12

0

1

0

1

0

1

(c) • L1 ◦ L2 ⊆ A. Given the words w1 ∈ L1 and w2 ∈ L2, we have

w = w1 ◦w2 ∈ L1 ◦ L2.

Because w2 ends with “1”, it implies that

sum(w2) ≥ 1.

Thus,
sum(w) = sum(w1) + sum(w2) ≥ 2.

Furthermore, the end word of w is also equal to the end word of w2, which is “1”, so

w ∈ A.

• A ⊆ L1 ◦ L2. Given a word w = w1 . . . wn ∈ A, there exists an index i ∈ N such that

w1 = · · · = wi−1 = 0 and wi = 1. (1)

Moreover,
i 6= n

because
sum(w) = 1 if i = n,
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which implies
w /∈ A.

Hence, let us denote w1 = w1 . . . wi, and we can derive that

w1 ∈ L1

by (1). Also, since w ∈ A, wn = 1. Then, it implies that

wi+1 . . . wn ∈ L2,

where we can take
w2 = wi+1 . . . wn.

Clearly,
w = w1 ◦w2 ∈ L1 ◦ L2.

Therefore, we have derived that
L1 ◦ L2 = A.

Note that we can draw a DFA to recognize L without any NFA, but usually it is difficult to find an
equivalent language from the concatenation of two languages.

Common mistake: to prove
A ⊆ L1 ◦ L2,

you must show that for any w ∈ A, we can have

w = w1 ◦w2

with w1 ∈ L1 and w2 ∈ L2.

Problem 2 (30 pts).

(a) (5 pts) Construct the NFA of the regular expression

1∗

using only one state. Give both the formal definition and its diagram. For this NFA, use

Σ1 = {1}

as the alphabet in the definition.

(b) (5 pts) Notice that on page 10 of the slide “chap1 NFA4.pdf”, we require two NFA to have the same
alphabet to be concatenated. This does not sacrifice any generality, since any NFA with alphabet
Σ′ can be expanded to an equivalent NFA with a larger alphabet Σ where Σ′ ⊂ Σ. Therefore, any
two NFA can be expanded to share the same alphabet before regular operations such as union and
concatenation.

(i) Given any NFA (Q,Σ′, δ′, q0, F ), show how to modify δ′ to a new transition function δ so that
(Q,Σ, δ, q0, F ) is an equivalent NFA.

(ii) Then, apply it to the NFA in subproblem (a) to give a new formal definition that uses the new
alphabet

Σ = {0, 1}.
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(c) (10 pts) Construct an NFA for the regular expression

R = (01∗)∗

by the following steps:

(i) Give the NFA diagram for regular expression

R1 = 0

using at most two states.

(ii) Using the method from slide “chap1 NFA4.pdf”, concatenate the NFA from subproblem (ci)
with the NFA from subproblem (a) to form the NFA diagram for the regular expression

R2 = 01∗.

(iii) Using the method from slide “chap1 NFA4.pdf”, perform the star operation on the NFA from
subproblem (cii) to give the diagram for the regular expression R.

(d) (10 pts) Convert the NFA diagram from subproblem (ciii) to a equivalent GNFA directly.1 Then
convert the GNFA back to a regular expression that is different (but equivalent) to the original
expression R. You should show the initial GNFA and the GNFA after each removal of a state.

Solution.

(a) The regular expression 1∗ can be recognized by this NFA:

q0 1

It has the formal definition:

M =(Q,Σ1, δ, q0, F )

Q ={q0}
F ={q0}

δ =
1 ε

q0 {q0} {}

(b)

(i) Given any NFA (Q,Σ′, δ′, q0, F ), we can enlarge the alphabet but does not allow any transition
using the new symbols. This way, the new NFA would still recognize the same language.
Formally, we define the new NFA as:

N =(Q,Σ, δ, q0, F )

δ(q, s) =

{
δ′(q, s) if s ∈ Σ′ε
{} if s /∈ Σ′ε

,∀q ∈ Q, s ∈ Σε

Common mistake: You need Σ′ε instead of Σ′. Note that ε /∈ Σ′.

1The text book only showed how to convert a DFA to a GNFA, but let’s apply the same procedure on an NFA.
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(ii) Applying this to the NFA from (a), we get:

M =(Q,Σ, δ, q0, F )

Q ={q0}
F ={q0}

δ =
0 1 ε

q0 {} {q0} {}

(c) (i) The NFA for 0 is

p0 p1
0

(ii) Concatenating the NFA from (ci) and (a), we get

p0 p1 q0
0 ε

1

(iii) Applying the star operation on the NFA from (cii), we get

p0qs p1 q0
ε 0 ε

1

ε

Common mistake: You need to have four states as we specifically asked you to follow the
slides. If you only have three states, you need to explain why no extra strings are accepted.

(d) In the text book, it only showed how to convert a DFA to a GNFA. However, NFA can also be
converted to GNFA directly. To do this, we only have to add a new start and accept state:

q0qs q1 q2 q3 qa
ε ε 0 ε

1ε

ε

ε

The states are renamed for convenience. Firstly, we can remove q2 and get

q0qs q1 q3 qa
ε ε 0

1ε

ε

ε
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since 0∅∗ε ∪ ∅ = 0. Then, we remove q1 to get:

q0qs q3 qa
ε 0

0 ∪ 1

ε

ε

After that, remove q3 and so we have:

q0qs qa
ε 0(0 ∪ 1)∗ ∪ ε

Finally, remove q0 so we get:

qs qa
0(0 ∪ 1)∗ ∪ ε

Therefore, the regular expression
0(0 ∪ 1)∗ ∪ ε

is equivalent to
(01∗)∗.

Problem 3 (20 pts). Let
Σ2 = {[ 00 ] , [ 01 ] , [ 10 ] , [ 11 ]}.

That is, Σ2 contains all columns of 0s and 1s of height two. Each string w ∈ Σ∗2 is written as

w = [ a1b1 ] [ a2b2 ] . . . [ anbn ] ,

where n ≥ 0, ai and bi are either 0 or 1 for each 1 ≤ i ≤ n. Consider the language

L = {w ∈ Σ∗2 | b1b2 . . . bn is the outcome of right shifting a1a2 . . . an by one bit}.

For simplicity, we assume the leftmost bit after applying the shift operation is always 0. For example,

[ 10 ] [ 11 ] [ 11 ] ∈ L, [ 00 ] [ 10 ] [ 01 ] ∈ L, while [ 11 ] [ 01 ] [ 00 ] /∈ L.

Note that ε ∈ L since the outcome of right shifting an empty string is still an empty string.

(a) (10 pts) Construct a DFA for L in less than or equal to 3 states

(b) (10 pts) Prove that L can not be recognized by a DFA with less than 3 states. Our proof is by
contradiction. Assume L can be recognized by a 2-state DFA. Then we must have the following
situations (here q0 is not necessary a start state):
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q0 q1
(1)

or

q0 q1
(2)

or

q0 q1
(3)

Explain which cases are not possible. From the remaining case(s), finish the proof.

Solution.

(a) L can be recognized by the following DFA:

q0 q1

qfail

[ 00 ]

[ 10 ]

[ 01 ] , [ 11 ]

[ 11 ]

[ 01 ]

[ 10 ] , [ 00 ]

[ 00 ] , [ 01 ] , [ 10 ] , [ 11 ]

(b) Case (1) is impossible, since we need a reject state to reject [ 11 ] [ 01 ] [ 00 ]. Case (3) is impossible, either,
since we need at least an accept state to accept [ 10 ] [ 11 ] [ 11 ]. Therefore, case (2) is the only remaining
situation.

For case (2), since ε is accepted, q0 must be the start state. Then the DFA must be of the following
form:

q0 q1
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We then focus on the transition δ(q0, [ 10 ]). If δ(q0, [ 10 ]) = q0, then [ 10 ] [ 10 ] /∈ L would be accepted.
However, if δ(q0, [ 10 ]) = q1, then [ 10 ] ∈ L would be rejected. This is a contradiction.

Problem 4 (30 pts). For the language in each subproblem, the alphabet Σ = {0, 1}.

(a) Consider

A = {w ∈ Σ∗ | w has an equal number of occurrences of 010 and 101 as substrings}.

We try to prove that A is not regular by the pumping lemma. Assume for contradiction that A is
regular with pumping length p. Consider

s = (010)p01(101)p ∈ A.

According to the pumping lemma, s can be written as xyz with |y| > 0, xyiz ∈ A for all i ≥ 0 and
|xy|≤p.

(i) (10 pts) Can we finish the proof by showing that xy0z /∈ A for all possibilities of x, y and z?

(ii) (5 pts) Can we finish the proof by showing that xy2z /∈ A for all possibilities of x, y and z?

(b) Consider

B = {w ∈ Σ∗ | w has an equal number of occurrences of 011 and 110 as substrings}.

We would like to show that B is regular. For simplicity, we denote #011 and #110 the number of
occurrences of 011 and 110 respectively.

(i) (10 pts) We want to show that |#011−#110| ≤ 1 holds for any w. Let n be the length of w.
The statement is trivial for n ≤ 3, since both #011 and #110 are no more than 1 for n ≤ 3.

For any n > 3, we can prove by induction. For any string, we define the following situations:

0s: the last character is 0 and #011 = #110

01s: the last 2 characters are 01 and #011 = #110

11s: the last 2 characters are 11 and #011 = #110

11+: the last 2 characters are 11 and #011 = #110 + 1

0−: the last character is 0 and #011 = #110− 1

01−: the last 2 characters are 01 and #011 = #110− 1.

Please prove that

if w1:n−1 = w1 . . . wn−1 is in one of these situations,

then w = w1 . . . wn is also in one of these situations.

(Then by induction, each w is in one of these situations. You don’t need to consider the initial
condition in this problem.)

(ii) (5 pts) Based on results in (bi), design a DFA with no more than 8 states for the language.

Solution.

(a) (i) We can obtain a contradiction by showing that xy0z /∈ A for all possible decomposition of
s = xyz. We splits all possible y’s into the following cases.
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Case 1: y contains at least one “1”.
Since there are only p 1’s in the substring (010)p of s, the number of 010 must decrease
if we remove y. Therefore, xy0z /∈ A.

Case 2: y = 0, xy0z = (010)k(10 ∪ 01)(010)p−k01(101)p.
For k = 0, #010 = p− 1 and #101 = p.
For k > 0 and |xy| ≤ p, #010 = p and #101 = p+ 1.

Case 3: y = 00, then xy0z = (010)k(0110)(010)p−k−201(101)p:
For k ≥ 0 and |xy| ≤ p, #010 = p− 2 and #101 = p.

Note: you must check all possible decompositions. If you consider a particular x and y and
think your proof is right, then you still don’t quite understand the pumping lemma.

(ii) We cannot obtain a contradiction by showing that xy2z /∈ A for all possible decomposition
of s = xyz. This is because for x = ε, y = 0 and z being the remaining part, xy2z =
0(010)p01(101)p ∈ A.

Comment: Originally, what we intend to prove is that

∀p, {∃s ∈ A, |s| ≥ p, [∀x, y, z((s = xyz and |y| > 0 and |xy| ≤ p)→ xy2z /∈ A)]}.

In the sample solution, when x = ε and y = 0, the above holds under any positive integer p.
However, it is sufficient that the chosen x and y are valid under a specific p. For example,
when p = 3, we can see for

x = 01 and y = 0,

|xy| ≤ p, |y| > 0 and xy2z ∈ A.

(b) (i) We prove the statement by enumerating all transitions among situations after appending 0 or
1 to w1 . . . wn−1.

wn

w1 . . . wn−1 0s 01s 11s 11+ 0− 01−

0 0s 0s 0− 0s 0− 0−
1 01s 11+ 11s 11+ 01− 11s

(ii) The figure is like the following. Note that we need a temporary q′ state to handle strings with
“1” as the first character.

qstart q0s q01s q11+

q′ q11s q0− q01−

0

1

0

1

0

1

1

0
0

1

1

0

0

1

0

1

10


