Homework #6

Due on December 19, 2022

4.7

Let \mathcal{B} be the set of all infinite sequences over $\{0,1\}$. Show that \mathcal{B} is uncountable using a proof by diagonalization.

7.1 (e)

Prove or disprove $3^n = 2^{O(n)}$ using the definition of big-O notation.

7.2 (b)

Prove or disprove $2n = o(n^2)$ using the following definition of small-*o* notation: Let *f* and *g* be functons from $\mathbb{N} \to \mathbb{R}^+$. f(n) = o(g(n)) means that for any real number c > 0, there exists n_0 such that f(n) < cg(n) for all $n \ge n_0$.

7.30

Let SET- $SPLITTING = \{\langle S, C \rangle \mid S \text{ is a finite set and } C = \{C_1, \ldots, C_k\} \text{ is a collection of subsets of } S$, for some k > 0, such that elements of S can be colored *red* or *blue* so that no C_i has all its elements colored with the same color }. Show that SET-SPLITTING is NP by

(a) providing a polynomial time verifier.

(b) providing a nondeterministic polynomoal time Turing machine that decides SET-SPLITTING.