Small-o I

- Two different concepts:
 - O: no more than something
 - o: less than something
- Definition

$$f(n) = o(g(n))$$

if

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=0.$$

Small-o II

• The definition of this limit:

$$\forall c > 0, \exists n_0, \forall n \ge n_0, rac{f(n)}{g(n)} \le c.$$

Note that we may instead write

$$\frac{f(n)}{g(n)} < c$$

but these two limit definitions are equivalent

Small-o III

• O versus o:

$$\exists c > 0, \exists n_0, \forall n \ge n_0, f(n) \le cg(n)$$

 $\forall c > 0, \exists n_0, \forall n \ge n_0, f(n) \le cg(n)$

The $\forall c$ causes o to be something smaller • $\sqrt{n} = o(n)$

$$\lim_{n\to\infty}\frac{\sqrt{n}}{n}=\lim_{n\to\infty}\frac{1}{\sqrt{n}}=0$$

Small-o IV

•
$$f(n) \neq o(f(n))$$

$$\lim_{n\to\infty}\frac{f(n)}{f(n)}=1\neq 0$$

Example: $A = \{0^k 1^k \mid k \ge 0\}$ |

- Let's count the number of steps in the algorithm discussed before
- Check if the input is

0....01....1

This takes O(n)

- Move back: O(n)
- Cross off each 0 and 1: O(n)
 How many such crosses: n/2

$$n/2 \times O(n) = O(n^2)$$

Example:
$$A = \{0^k 1^k \mid k \ge 0\}$$
 II

Accept or not?
O(n) to go through from beginning to end
Total:

$$O(n) + O(n^2) + O(n) = O(n^2)$$

Time complexity class I

Definition:

 $TIME(t(n)) \equiv \{L \mid L \text{ a language decided by an } O(t(n)) \text{ TM} \}$

• We have

$$\{0^k1^k \mid k \ge 0\} \in \mathsf{TIME}(n^2)$$

Can we make it faster?

New Algorithm for $A = \{0^k 1^k \mid k \ge 0\}$ I

• The procedure: cross off every other 0 and 1 <u>0000011111</u> 0011

<u>01</u>

 ϵ

key: length of the string left must be always even

- A failed algorithm
 <u>000011</u>
 001
- Algorithm

New Algorithm for $A = \{0^k 1^k \mid k \ge 0\}$ II

- check 0...0 1...1
- In the second seco
- o 0 & 1 remain, accept
- If 13 "0" \Rightarrow 6 "0" \Rightarrow 3 "0" \Rightarrow 1 "0"
 - $1 + \log_2 n$ iterations
- Each iteration: O(n) operations
 Note that length of tape contents is still n as we only "mark" elements
- Total cost: $O(n \log n)$

New Algorithm for $A = \{0^k 1^k \mid k \ge 0\}$ III

• Therefore

$\{0^k 1^k \mid k \ge 0\} \in \mathsf{TIME}(n \log n)$

- Can we do better? no
- Any language decided in o(n log n) on a single-tape TM ⇒ regular (not proved here)
- But we know that

$$\{0^k1^k \mid k \ge 0\}$$

is not regular

New Algorithm for $A = \{0^k 1^k \mid k \ge 0\}$ IV

• What if we copy the remained string to be after the current string? It seems that we then have

$$n+\frac{n}{2}+\frac{n}{4}+\cdots=O(n)??$$

The problem is that the copy operation is expensive.
 Copying n elements needs O(n²)

Using two-tape TM for $\{0^k 1^k \mid k \ge 0\}$ I

- We can have an O(n) procedure
 - check 0...0 1...1
 - copy 0 to the second tape find the first 1
 - sequentially cut 1 and 0 if no "0" reject
 - if "1" left, reject otherwise, accept
- Each step O(n)