Hamiltonian Path I

- For some problems it is difficult to find an algorithm in P
- We first discuss an example of finding a Hamiltonian Path
- Definition: for a given directed graph find a path going through all nodes once
- Fig 7.17

Hamiltonian Path II

- HAMPATH = { $\langle G, s, t \rangle | G :$ a directed graph, a Hamiltonian path from s to t}
- A brute-force way: checking all possible paths But the number is exponential
- Polynomial verification

for a path, in P time \Rightarrow a Hamiltonian path or not

Hamiltonian Path III

• This is an example where verification is easier than determination

Compositeness I

- We discuss another example where verification is easier than determination
- An integer is composite if

$$x = pq, p > 1, q > 1$$

- Given x, difficult to find p, q
- Given x, p, q easily verify x = pq or not

Not polynomial verifiable I

- Some problems are difficult so even a polynomial verifier cannot be easily obtained
- $\overline{HAMPATH}$: given $\langle G, s, t \rangle$ no Hamiltonian path from s to t
- Verification may still be difficult
- Given s and t it seems we still need to check all paths

Verifier I

 Definition: an algorithm V is a verifier of a language A if

$$A = \{w \mid V \text{ accepts } \langle w, c
angle \text{ for some strings } c \}$$

- Example: compositeness. V accepts $\langle w, c \rangle = \langle x, p \rangle$, where p is a divisor
- Example: Hamiltonian path. V accepts

$$\langle w,c
angle = \langle \langle G,s,t
angle,$$
 a path from s to $t
angle$

• c is called a "certificate"

Verifier II

- Definition: a polynomial verifier if it takes polynomial time of |w|
- A: polynomially verifiable if \exists a polynomial verifier
- Note that we measure time on |w| without considering |c|
- For a polynomial verifier, |c| should be in polynomial of |w|

Otherwise, reading |c| already non-polynomial

NP I

- NP is a class of languages
- Definition: a language \in NP if it has a polynomial verifier
- We will prove that this definition is equivalent to that the language is decided by nondeterministic polynomial TM
- This is where the name comes from
- Some use this as the definition
- Note that for nondeterministic TM the running time is by checking the longest branch

• Definition:

NTIME(t(n)) ={ $L \mid L$ decided by O(t(n)) nondeterministic TM}

• NP = \cup_k NTIME (n^k)

NTM for HAMPATH I

- A list $p_1 \cdots p_m$ is nondeterministically chosen
- For each list:
 - Check repetitions
 - 2 Check $s = p_1$; $t = p_m$
 - Solution Check that for $i = 1 \dots m 1$, (p_i, p_{i+1}) is an edge of G
- Cost on each list is polynomial: repetitions: O(m²)
 s = p₁, t = p_m : O(m)
 edge check: O(m²)