Configuration of TM: I

- The current configuration means current state, tape contents, head location
- *uqv*: *q*: current state
 - uv: current tape content
 - u: left, v: right
 - head: first of v

Example of configuration I

uaq_ibv yields *uq_jacv*

• if
$$\delta(q_i, b) = (q_j, c, R)$$

uaqibv yields uacqjv

More about Configurations I

- start configuration: q₀w
- accepting configuration: q_{accept}
- rejecting configuration: q_{reject}
- A TM accepts w if configurations $c_1 \cdots c_k$
 - c_1 : start configuration
 - 2 c_i yields c_{i+1}
 - c_k accepting configuration
- Language: L(M): strings accepted by M

Turing-recognizable I

- A language is Turing-recognizable if it is recognized by a TM
- For a Turing machine, there are three possible outcomes

accept, reject, loop

- If an input fails: reject or loop This is difficult to decide
- We prefer a TM that never loops Deciders: only accept or reject

Turing-recognizable II

- A language is Turing-decidable if some TM decides it
- In Chapter 4 we will discuss decidable languages

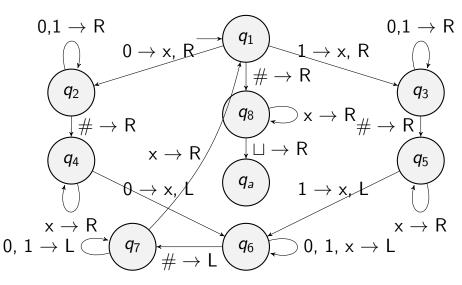
Example 3.9 I

• Consider the following language

$$\{w \# w \mid w \in \{0,1\}^*\}$$

• Fig 3.10

Example 3.9 II



Example 3.9 III

- Links to q_r are not shown
- Simulate 01#01

 $x1q_2\#01 \quad x1\#q_401 \ q_7x1\#x1 \quad xq_11\#x1 \ xx\#xq_51 \quad xx\#q_6xx \ xxq_1\#xx \quad xx\#q_8xx$

Example 3.9 IV

• Idea of the diagram:

$$q_1
ightarrow q_2
ightarrow q_4
ightarrow q_6$$

check 0 at the same position of the two strings

$$q_1
ightarrow q_3
ightarrow q_5
ightarrow q_6$$

check 1 at the same position of the two strings
q₆: move left to the beginning of the second string

Example 3.9 V

• q_7 : move left by

$$q_7 \xrightarrow{0,1
ightarrow L} q_7$$

until finding the first 0, 1 not handled yet:

$$q_7 \xrightarrow{x o R} q_1$$

• Thus q_6 and q_7 cannot be combined. At q_6 ,

$$x \rightarrow L$$

but at q_7

$$x \to R$$

Example 3.11 |

•
$$C = \{a^i b^j c^k \mid i \times j = k, i, j, k \ge 1\}$$

Procedure

- check if the input is $a^+b^+c^+$
- back to start
- If ix a, for each b, cancel c
- store b back, cancel one a, go to step 3
- Too complicated to draw state diagram
- But one may wonder if TM can really do the above procedure
- Here are more details

Example 3.11 II

- Step 1 can be done by a DFA (as DFA is a special case of TM)
- Step 2 can be done by using a special symbol in the beginning
- Step 3 is similar to the procedure of handling w # wNow we see the concept of subroutines

Example 3.12 |

•
$$E = \{ \# x_1 \# x_2 \cdots \# x_l \mid x_i \in \{0, 1\}^*, x_i \neq x_j \}$$

• Idea: sequentially compare every pair

$$x_1x_2, x_1x_3, \dots, x_1x_l$$

 x_2x_3, \dots, x_2x_l
 $x_{l-1}x_l$

 This description is rough. Let's check more details For x_i, x_j mark #'s of both strings by # #x₁#x₂#x₃: x₁ and x₃ being compared

Example 3.12 II

- Compare x_i and x_j:
 Can use a TM similar to that for w#w
- We can copy x_i, x_j to the end and do the comparison there