Turing Machines: I

• Part II: computability

We would like to study problems that can and cannot be solved by computers

- We need a more powerful model
 Finite automata: small memory (states)
 PDA: unlimited memory (stack) by push/pop
- Turing machine: unlimited and unrestricted memory
- This is about everything a real computer can do
- Thus problems not solved by Turing machines
 ⇒ beyond the limit of computation

Turing Machines: II

• A TM has a tape as the memory

- Differences from finite automata
 - write/read tape
 - head moves left/right
 - infinite space in the tape
 - rejecting/accepting take immediate effect
 - machine goes on forever, otherwise

Turing Machines: III

• Example

$$B = \{ w \# w \mid w \in \{0,1\}^* \}$$

- We can prove that *B* is not CFL using pumping lemma for CFL (similar to example 2.38)
- Running a sample input. Figure 3.2
- \sqcup : blank symbol

We assume infinite \sqcup 's after the input sequence

• Strategy: zig-zag to the corresponding places on the two sides of the # and determine whether they match.

Turing Machines: IV

$\stackrel{\bullet}{0} 1 1 0 0 0 \# 0 1 1 0 0 0 \sqcup$ $\times \stackrel{\bullet}{1} 1 0 0 0 \# 0 1 1 0 0 0 \sqcup$ $\times 1 1 0 0 0 \# \times 1 1 0 0 0 \sqcup$

• Algorithm:

- scan to check #
- Check w and w

Formal definition of TM I

It's complicated and seldom used
δ:

$$Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$$

• Example:

$$\delta(q,a) = (r,b,L)$$

- q: current state
- a: pointed in tape
- r: next state
- b: replace a with b
- L: head then moved to the left

Formal definition of TM II

- $(Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$
 - Q: states
 - Σ : input alphabet (blank: $\sqcup \notin \Sigma$)
 - Γ : tape alphabet, $\sqcup \in \Gamma, \Sigma \subset \Gamma$
 - δ :

$$Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$$

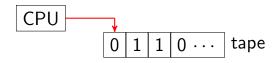
 $egin{aligned} q_0 \in Q, ext{ start} \ q_{accept} \in Q \ q_{reject} \in Q, q_{reject}
eq q_{accept}, q_{accept}, q_{reject} \end{aligned}$

Formal definition of TM III

• The input

$$w_1 \cdots w_n$$

is put in positions $1 \dots, n$ of the tape in the beginning


Assume \sqcup in all the rest of the tape

• If head points to first position and

$$\delta(q,?) = (r,?,L)$$

then the head stays at the same position

Formal definition of TM IV

