The Overall Procedure I

Given
P = (Q, Σ, Γ, δ, q₀, {q_{accept}})
Construct a CFG G

$$\mathsf{var}(G) = \{A_{pq} \mid p, q \in Q\}$$

• Start variable:

$$A_{q_0,q_{accept}}$$

• Rules: see earlier slides

Needed modifications of PDA I

- Recall we need PDA to satisfy
 - Single accept state
 - Stack empty before accepting
 - Each transition push or pop, but not both
- Let's handle the first two together: single accept and stack empty before accepting:
- A new start $q_s \rightarrow q_{s'}$ with $\epsilon, \epsilon \rightarrow$ \$
- For any q ∈ F, we have e, a → e back to q, ∀a.
 This pops things out before accepting a string
- Then from any $q \in F$, we do $\epsilon, \$ \to \epsilon$ to q_a .

Needed modifications of PDA II

- $q \in F$ are no longer accept states
- See the illustration in the following figures
- Original PDA:

Needed modifications of PDA III

New:

Needed modifications of PDA IV

Is this correct? Let's check an example: (Thank student 吳彦翔 for providing this example.)

- This machine would not accept a
- At q₂, stack is {b, a}. Then we cannot go to q₃ by processing a.

Needed modifications of PDA V

Applying the procedure described earlier:

• The machine now accepts $a \implies$ incorrect!

Needed modifications of PDA VI

We should only pop the stack at the end of input. Therefore, we should have:

• A new start $q_s \rightarrow q_{s'}$ with $\epsilon, \epsilon \rightarrow$

- A new state q_{pop} that have $\epsilon, a \to \epsilon$ back to $q_{pop}, \forall a$.
- For $q \in F$, add a transition $\epsilon, \epsilon \rightarrow \epsilon$ from q to q_{pop}
- Add a new accept state q_a and a transition $\epsilon, \$ \to \epsilon$ from q_{pop} to q_a

Needed modifications of PDA VII

A correct modification of the PDA:

Needed modifications of PDA VIII

• To have each transition push or pop, but not both, change

$$q_1
ightarrow q_2$$
 with $a, a
ightarrow b$

to

$$egin{array}{lll} q_1
ightarrow q_3, a, a
ightarrow \epsilon \ q_3
ightarrow q_2, \epsilon, \epsilon
ightarrow b \end{array}$$

and change

$$q_1 \rightarrow q_2, a, \epsilon \rightarrow \epsilon$$

to

Regular language is context Free I

- We roughly know this but didn't give a formal proof. Here are the steps
- Regular language \Rightarrow recognized by DFA (in Chapter 1)
- DFA is a PDA
- Thus regular language recognized by PDA
- Then any regular language is context free (by the proof in this chapter)

Non-context free languages l

- There are such languages
- We omit the discussion