Pushdown automata I

- Context-free languages are more general than regular languages
- For regular languages, by definition, there are automata to recognize them
- What are machines to recognize CFL?
- Pushdown automata (PDA)
 It's more powerful by having a stack
- DFA (or NFA):

Pushdown automata II

• Pushdown automata:

What is a stack?
 We know they are like plates in a cafeteria

An important property: last in first out

• Let's see how stack can help to recognize

 $\{0^n1^n \mid n \ge 0\}$

- If 0 is read, 0 is pushed to stack
- If 1 is read, 0 is popped up
- By checking (0, 1) pairs, we know if the input is $0^n 1^n$

Example 2.14 |

• Consider the following language

 $\{0^n1^n\mid n\geq 0\}$

Example 2.14 II

- \$: a special symbol to indicate the initial state of stack
- How it works:
 - $q_2
 ightarrow q_2$, put 0 into stack $q_2
 ightarrow q_3$ and $q_3
 ightarrow q_3$, read 1 and pop 0 up
- The input

0011

is the same as

ϵ 0011 ϵ

Example 2.14 III

• Steps:

$$\begin{array}{l} q_1, \emptyset, \epsilon \\ q_2, \{\$\}, 0 \\ q_2, \{0, \$\}, 0 \\ q_2, \{0, 0, \$\}, 1 \\ q_3, \{0, \$\}, 1 \\ q_3, \{\$\}, \epsilon \\ q_4, \{\} \end{array}$$

 $\{\}:$ contents of the stack before processing the input character

Example 2.14 IV

- We see that \$ can be used to check if the stack is empty
- Consider 00011 Steps:

$$q_1, \emptyset, \epsilon$$

 \vdots
 $q_2, \{0, 0, 0, \$\}, 1$
 $q_3, \{0, 0, \$\}, 1$
 $q_3, \{0, \$\}, ?$

Cannot reach $q_4 \Rightarrow$ rejected

Formal definition of pushdown automata I

• $F \subset Q$: set of accept states

• We rely on

Formal definition of pushdown automata II

state, input, top of stack to decide the move

$$q_1 \stackrel{a,b
ightarrow c}{\longrightarrow} q_2$$

From q_1 , read a, and replace top of stack b with c

Formal definition of example 2.14 l

• The language is

$$\{0^n1^n\mid n\geq 0\}$$

• $M_1 = (Q, \Sigma, \Gamma, \delta, q_1, F)$

$$egin{aligned} Q &= \{ q_1, q_2, q_3, q_4 \} \ \Sigma &= \{ 0, 1 \} \ \Gamma &= \{ 0, \$ \} \ F &= \{ q_1, q_4 \} \end{aligned}$$

Formal definition of example 2.14 II

		0	1			ϵ	
	0	\$ ϵ	0	\$ ϵ	0	\$	ϵ
q_1							$\{(q_2, \$)\}$
q ₂		$\{(q_2, 0)\}$	$\{(q_3,\epsilon)\}$				
q 3			$\{(q_3,\epsilon)\}$			$\{(q_4,\epsilon)\}$	
q_4							

• In the definition of δ we have $\Sigma_{\epsilon} \times \Gamma_{\epsilon}$ Thus 9 columns in the table