Convert Context-free to Chomsky normal I

A procedure to summarize what we have done in the example

Add

$$S_0 \rightarrow S$$

So start state not on the right

• Remove $A \rightarrow \epsilon$, where A is not the start state:

Convert Context-free to Chomsky normal

For any rule of $\cdots o uAv$ add

We discuss the issue of a possible infinite loop later

 $\cdots \rightarrow uv$

Convert Context-free to Chomsky normal III

Remove

$A \rightarrow B$

because the right hand cannot have a single variable. For any

B
ightarrow u, where u is a string of variables and terminals

we

remove $A \rightarrow B$ and $B \rightarrow u$, and add $A \rightarrow u$

Convert Context-free to Chomsky normal IV

unless $A \rightarrow u$ is a unit rule previously removed (this setting avoids the possible infinite loop)

• After this, we have either

$$A \rightarrow u_1 \cdots u_k, u_i \in V$$
 or Σ ;

and

if
$$k = 1$$
, then $u_i \in \Sigma$

Convert Context-free to Chomsky normal V

• Replace the right side with

$$A
ightarrow u_1 A_1$$

 $A_1
ightarrow u_2 A_2$

Replace any u_i in the above rules with U_i
Add

$$U_i \rightarrow u_i$$
 if $u_i \in \Sigma$

Infinite loop in the above procedure I

Original rules

$$S \to B \mid \epsilon$$
$$B \to S \mid \epsilon$$

• Add S_0

$$\begin{array}{l} S_0 \rightarrow S \\ S \rightarrow B \mid \epsilon \\ B \rightarrow S \mid \epsilon \end{array}$$

Infinite loop in the above procedure II

• Remove $S \rightarrow \epsilon$

$$S_0 \to S \mid \epsilon$$
$$S \to B$$
$$B \to S \mid \epsilon$$

• Remove $B \rightarrow \epsilon$

$$S_0 \to S \mid \epsilon$$
$$S \to B \mid \epsilon$$
$$B \to S$$

Infinite loop in the above procedure III

- $\bullet~$ No need to add $S \to \epsilon$
- Reason: S → e has been handled; see line -8 of p109 in the textbook.