Chomsky normal form (CNF) I

- Purpose: a simplified form of grammars
- Every rule must be either

$$A \rightarrow BC$$

or

$$A \rightarrow a$$

B, C are not start variables
a ∈ Σ so

$$A \rightarrow \epsilon$$

is not allowed.

Chomsky normal form (CNF) II

• However,

$$S \to \epsilon$$

is allowed, where S is the start variable

- This form is useful later (but not in this chapter)
- To convert a CFG to a CNF, let's show an example first

Example to convert CFG to CNF I

• The original CFG

$$S \rightarrow ASA \mid aB$$
$$A \rightarrow B \mid S$$
$$B \rightarrow b \mid \epsilon$$

Example to convert CFG to CNF II

Add

$$S_0 \rightarrow S$$

because the start variable cannot be on the right

$$S_0
ightarrow S$$

 $S
ightarrow ASA \mid aB$
 $A
ightarrow B \mid S$
 $B
ightarrow b \mid \epsilon$

Example to convert CFG to CNF III

• Remove

$$B \to \epsilon$$

because ϵ cannot be on the right

$$S_0 \rightarrow S$$

 $S \rightarrow ASA \mid aB \mid a$
 $A \rightarrow B \mid \epsilon \mid S$
 $B \rightarrow b$

Example to convert CFG to CNF IV

• Remove $A \rightarrow \epsilon$

What if

$$B \to \epsilon$$

appears again? An infinite loop? We will discuss this issue later

Example to convert CFG to CNF V

 Remove S → S because the right-hand side cannot be a single variable

$$S_0
ightarrow S$$

 $S
ightarrow ASA \mid aB \mid a \mid AS \mid SA$
 $A
ightarrow B \mid S$
 $B
ightarrow b$

Example to convert CFG to CNF VI

• Remove
$$S_0 \rightarrow S$$

$$S_0
ightarrow ASA \mid aB \mid a \mid AS \mid SA$$

 $S
ightarrow ASA \mid aB \mid a \mid AS \mid SA$
 $A
ightarrow B \mid S$
 $B
ightarrow b$

Example to convert CFG to CNF VII

• Remove $A \rightarrow B, A \rightarrow S$

$$S_{0} \rightarrow ASA \mid aB \mid a \mid AS \mid SA$$
$$S \rightarrow ASA \mid aB \mid a \mid AS \mid SA$$
$$A \rightarrow b \mid ASA \mid aB \mid a \mid AS \mid SA$$
$$B \rightarrow b$$

Example to convert CFG to CNF VIII

• Finally

$$S_{0} \rightarrow AA_{1} \mid UB \mid a \mid AS \mid SA$$
$$S \rightarrow AA_{1} \mid UB \mid a \mid AS \mid SA$$
$$A \rightarrow b \mid AA_{1} \mid UB \mid a \mid AS \mid SA$$
$$A_{1} \rightarrow SA$$
$$U \rightarrow a$$
$$B \rightarrow b$$