Regular Operations I

- Regular operations can be used to study whether languages are regular or not.
- That is, we aim to check for a given language, whether there are finite automata to recognize it or not.
- Three definitions:
 - A, B are given languages
 - union

 $$A \cup B$$
concatenation

\[A \circ B = \{ xy \mid x \in A, y \in B \} \]

star:

\[A^* = \{ x_1 \cdots x_k \mid k \geq 0, x_i \in A \} \]
If $k = 0$, what do we mean $x_1 \cdots x_k$?

We define

$\epsilon : \text{empty string}$

in this situation

Thus

$\epsilon \in A^*$
Example

\[\Sigma = \{a, \ldots, z\} \]
\[A = \{\text{good, bad}\} \]
\[B = \{\text{boy, girl}\} \]
\[A \circ B = \{\text{goodboy, \ldots}\} \]
\[A^* : \{\epsilon, \text{good, bad, goodgood, \ldots}\} \]

- We say an operation \(R \) is **closed** if the following property holds

 \[\text{if } x \in A, y \in A, \text{ then } xRy \in A \]
Example: $\mathbb{N} = \{1, 2, \ldots\}$ is closed under multiplication

- **Th 1.25:** regular languages are closed under the union operation

 A_1, A_2 are regular languages
 \[\Rightarrow A_1 \cup A_2 \text{ is regular}\]

- **Proof**
Assume we are given two automata

\[M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1) \]
\[M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2) \]
Construct a new machine

\[M = (Q, \Sigma, \delta, q, F) \]

\[Q = \{(r_1, r_2) \mid r_1 \in Q_1, r_2 \in Q_2\} \]

\[\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a)) \]

\[q_0 = (q_1, q_2) \]

\[F = \{(r_1, r_2) \mid r_1 \in F_1 \text{ or } r_2 \in F_2\} \]

Example: combining

\[\{w \mid w \text{ has an odd } \# 1's\} \cup \]

\[\{w \mid w \text{ has an odd } \# 0's\} \]
Regular Operations VIII

- \(q_e \) transitions:
 - 0 to \(q_o \)
 - 1 to \(s_e \)

- \(q_o \) transitions:
 - 0 to \(q_e \)

- \(s_e \) transitions:
 - 1 to \(s_o \)
 - 0 to \(s_e \)

- \(s_o \) transitions:
 - 0 to \(s_e \)
 - 1 to \(q_o \)
Is this proof rigourously enough?
A formal proof should be done by induction. But we don’t provide it here

- Th 1.26: closed under concatenation
 - If A, B are regular, then $A \circ B$ is regular
 - But the proof is not easy
 - It’s unclear where to break the input

- To easily do the proof, we introduce a new technique called **nondeterminism**