Example 1.11 |

Example 1.11 II

Example 1.11 III

where "…" can be any string of a and b
First we check that any string accepted by the machine must be

b...b

Second we check that any

can be recognized by the machine

Example 1.11 IV

• This machine handles strings with the same character in the beginning and in the end

• Figure 1.14

Example 1.13 II

Example 1.13 III

•
$$\Sigma = \{ \langle reset \rangle, 0, 1, 2 \}$$

 $L(M) = \dots \langle reset \rangle \dots \langle reset \rangle \dots$
 $= \{ sum of the last segment \mod 3 = 0 \}$

• Example:

$10 \langle \textit{reset} \rangle 22 \langle \textit{reset} \rangle 012$

Example 1.13 IV

• An example of running a string

$$egin{aligned} q_0 & rac{1}{
ightarrow} q_1 & rac{\langle \textit{reset}
angle}{
ightarrow} q_0 & rac{2}{
ightarrow} q_2 & rac{2}{
ightarrow} q_1 \ rac{\langle \textit{reset}
angle}{
ightarrow} q_0 & rac{0}{
ightarrow} q_0 & rac{1}{
ightarrow} q_1 & rac{2}{
ightarrow} q_0 \end{aligned}$$

Accepted

• Each node stores the sum of the current segment mod 3

Formal Definition of Computation I

• *M* accepts $w = w_1 \cdots w_n$ if \exists states $r_0 \cdots r_n$ such that

•
$$r_0 = q_0$$

• $\delta(r_i, w_{i+1}) = r_{i+1}, i = 0, \dots, n-1$
• $r_n \in F$

- Definition: a language is regular if recognized by some automata
- This is a very important definition
- Examples described earlier are regular languages
- We say some automata, so it's possible to have several automata for the same language

Formal Definition of Computation II

• As long as there is one, then the language is regular

Designing Automata I

- Given a language, how do we construct a machine to recognize it?
- Basically we need to get a state diagram (where the number of states is finite)
- Earlier we had the opposite: a machine is given and we check the corresponding language
- Example: an automaton recognizing $\{0,1\}$ strings with an odd # of 1's
 - Fig 1.20

Designing Automata II

• Sample strings 01 $q_e \xrightarrow{0} q_e \xrightarrow{1} q_o$

010101

$$q_e \xrightarrow{0} q_e \xrightarrow{1} q_o \xrightarrow{0} q_o \xrightarrow{1} q_e \xrightarrow{0} q_e \xrightarrow{1} q_o$$

Designing Automata III

- Two ways to think about the design
 - After the first 1, we go to q_o . Subsequently, every 1, ..., 1 pair is cancelled out by

$$q_o \stackrel{1}{
ightarrow} q_e
ightarrow \cdots
ightarrow q_e \stackrel{1}{
ightarrow} q_o$$

- q_e, q_o respectively remember whether the number of 1's so far is even or odd
- Example 1.21
 Language: strings containing 001
 Fig 1.22

Designing Automata IV

 q₀, q₀₀ indicate that before the current input character, we have 0 and 00, respectively