From past discussion, we know

decidable \rightarrow **computationally solvable**

However, this does not mean it is solvable in practice

The running time may be just too long
Example I

- $A = \{0^k1^k \mid k \geq 0\}$
 What’s the number of steps by a 1-tape TM to process a string?
- Remember the procedure
 1. check if input is 0^*1^*
 2. repeat until no 0 or 1
 scan, cross off single 0 and 1
 3. if 0 or 1 remains, reject
 otherwise, accept
- How much time?
 Need to count number of steps
Analysis I

- worst-case analysis
 longest time for all inputs
- average-case analysis
- Usually it is easier to do worst-case analysis

A function

\[f : \mathbb{N} \rightarrow \mathbb{N} \]

to represent the number of steps

\(N \): natural number

\(n \): length of input
Big-O I

- A way to understand the running time of the algorithm when it is run on large inputs
- Consider

\[f(n) = 6n^3 + 5 \]

We have

\[n \to \infty, 6n^3 + 5 \approx 6n^3 \]

- \(O(f(n)) = O(n^3) \)

How about 6?

- \(6n^3 \) vs. \(n^3 \)
- \(6n^3 \) vs. \(n^4 \)
Only things involved with \(n \) are important

Definition:

\[
f(n) = O(g(n))
\]

if

\[
\exists c, n_0, \forall n \geq n_0, f(n) \leq cg(n).
\]
Example I

Consider

\[f(n) = 6n^3 + 5 \]

We have

\[6n^3 + 5 \leq 7n^3 \text{ after } n \geq 2 \]

That is, we choose

\[c = 7 \text{ and } n_0 = 2 \]

Thus

\[f(n) = O(n^3) \]
Example II

- \(f(n) = O(n^4) \) as
 \[6n^3 + 5 \leq 7n^4, \text{ after } n \geq 2 \]
- But \(f(n) \neq O(n^2) \)
 \[6n^3 + 5 \leq cn^2 \]
 cannot always hold because we can choose large \(n \) such that
 \[n^3 > cn^2 \]
 Formally we have the following opposite statement:
 \[\forall c, n_0 \exists n \geq n_0, f(n) > cg(n) \]
Example 7.4 I

Consider

\[f(n) = 3n \log_2 n + 5n \log_2 \log_2 n \]

We prove

\[f(n) = O(n \log n) \]

by

\[\log_2 \log_2 n \leq \log_2 n \text{ from } \log_2 n \leq n \]

\[f(n) \leq 8n \log_2 n = 8n \log_2 b \log_b n \]
Note that
\[\log_2 n / \log_2 b = \log_b n \]

So we write
\[f(n) = O(n \log n) \]
as there is no need to write \(\log_2 n \).
Other properties I

- We have

 \[O(n^2) + O(n) = O(n^2) \]

- Formally,

 \[
 f(n) = O(n^2), \ g(n) = O(n) \\
 \Rightarrow f(n) + g(n) = O(n^2)
 \]
Other properties II

Proof

\[\exists c_1, n_1, \forall n \geq n_1, f(n) \leq c_1 n^2 \]
\[\exists c_2, n_2, \forall n \geq n_2, g(n) \leq c_2 n \]

Then

\[f(n) + g(n) \leq c_1 n^2 + c_2 n \leq (c_1 + c_2)n^2 \]

after \(n \geq \max(n_1, n_2) \)

Thus we choose

\[c = c_1 + c_2 \text{ and } n_0 = \max(n_1, n_2) \]
Definition:

\[f(n) = 2^{O(n)} \]

if \(\exists c, n_0 \) such that

\[f(n) \leq 2^{cn}, \forall n \geq n_0 \]

\(O(1) \): \(\exists c, n_0 \) such that

\[f(n) \leq c1, \forall n \geq n_0 \]

Thus

\[f(n) \leq \max\{f(1), \ldots, f(n_0 - 1), c\}, \forall n \]
That is, $f(n)$ always \leq a constant.