From past discussion, we know decidable \rightarrow computationally solvable

However, this does not mean it is solvable in practice

The running time may be just too long
Example 1

- $A = \{0^k1^k \mid k \geq 0\}$

What’s the number of steps by a 1-tape TM to process a string?

- Remember the procedure
 1. check if input is 0^*1^*
 2. repeat until no 0 or 1
 scan, cross off single 0 and 1
 3. if 0 or 1 remains, reject
 otherwise, accept

- How much time?
Need to count number of steps
Analysis I

- worst-case analysis
 longest time for all inputs
- average-case analysis
- Usually it is easier to do worst-case analysis
- We use a function

\[f : N \rightarrow N \]

to represent the number of steps

\(N \): natural number

\(n \): length of input, \(f(n) \): number of steps
Big-O I

- A way to understand the running time of the algorithm when it is run on large inputs
- Consider
 \[f(n) = 6n^3 + 5 \]

We have
\[n \rightarrow \infty, \ 6n^3 + 5 \approx 6n^3 \]

- \(O(f(n)) = O(n^3) \)

How about 6?
\[6n^3 \text{ vs. } n^3 \]
\[6n^3 \text{ vs. } n^4 \]
Only things involved with n are important

Definition:

\[f(n) = O(g(n)) \]

if

\[\exists c, n_0, \forall n \geq n_0, f(n) \leq cg(n). \]
Example 1

Consider

\[f(n) = 6n^3 + 5 \]

We have

\[6n^3 + 5 \leq 7n^3 \text{ after } n \geq 2 \]

That is, we choose

\[c = 7 \text{ and } n_0 = 2 \]

Thus

\[f(n) = O(n^3) \]
Example II

- $f(n) = O(n^4)$ as

 $6n^3 + 5 \leq 7n^4$, after $n \geq 2$

- But $f(n) \neq O(n^2)$

 $6n^3 + 5 \leq cn^2$

 cannot always hold because we can choose large n such that

 $n^3 > cn^2$
Example III

- Formally we have the following opposite statement of the definition:

\[\forall c, n_0, \exists n \geq n_0, f(n) > cg(n) \]
Consider

\[f(n) = 3n \log_2 n + 5n \log_2 \log_2 n \]

We prove

\[f(n) = O(n \log n) \]

by

\[\log_2 \log_2 n \leq \log_2 n \text{ from } \log_2 n \leq n \]

\[f(n) \leq 8n \log_2 n = 8n \log_2 b \log_b n \]
Example 7.4 II

- Note that

\[\frac{\log_2 n}{\log_2 b} = \log_b n \]

- So we write

\[f(n) = O(n \log n) \]

as there is no need to write \(\log_2 n \)
Other properties I

- We have

\[O(n^2) + O(n) = O(n^2) \]

- Formally,

\[f(n) = O(n^2), \ g(n) = O(n) \]

\[\Rightarrow f(n) + g(n) = O(n^2) \]
Other properties II

Proof

\(\exists c_1, n_1, \forall n \geq n_1, f(n) \leq c_1 n^2 \)

\(\exists c_2, n_2, \forall n \geq n_2, g(n) \leq c_2 n \)

Then

\[
f(n) + g(n) \leq c_1 n^2 + c_2 n \leq (c_1 + c_2) n^2 \text{ after } n \geq \max(n_1, n_2)
\]

Thus we choose

\[c = c_1 + c_2 \text{ and } n_0 = \max(n_1, n_2) \]
Other properties III

- **Definition:**
 \[f(n) = 2^{O(n)} \]
 if \(\exists c, n_0 \) such that
 \[f(n) \leq 2^{cn}, \forall n \geq n_0 \]

- **O(1):** \(\exists c, n_0 \) such that
 \[f(n) \leq c1, \forall n \geq n_0 \]

Thus

\[f(n) \leq \max\{f(1), \ldots, f(n_0 - 1), c\}, \forall n \]
That is,

\[f(n) \text{ always } \leq \text{ a constant} \]