From past discussion, we know decidable \rightarrow computationally solvable

However, this does not mean it is solvable in practice

The running time may be just too long
Example 1

- \(A = \{0^k1^k \mid k \geq 0\} \)

 What’s the \# steps by a 1-tape TM to process a string?

- Remember the procedure
 1. check if input is 0*1*
 2. repeat until no 0 or 1
 - scan, cross off single 0 and 1
 3. if 0 or 1 remains, reject
 - otherwise, accept

- How much time?
 Need to count \# steps
Analysis I

- worst-case analysis
 longest time for all inputs
- average-case analysis
- Usually it is easier to do worst-case analysis
- A function
 \[f : N \rightarrow N \]
 to represent the number of steps
 \(N \): natural number
 \(n \): length of input
• A way to understand the running time of the algorithm when it is run on large inputs

• Consider

\[f(n) = 6n^3 + 5 \]

We have

\[n \to \infty, \ 6n^3 + 5 \approx 6n^3 \]

• \(O(f(n)) = O(n^3) \)

How about 6?

\[6n^3 \text{ vs. } n^3 \]

\[6n^3 \text{ vs. } n^4 \]
Only things involved with n are important

Definition:

$$f(n) = O(g(n))$$

if

$$\exists c, n_0, \forall n \geq n_0, f(n) \leq cg(n).$$
Example 1

Consider

\[f(n) = 6n^3 + 5 \]

We have

\[6n^3 + 5 \leq 7n^3 \text{ after } n \geq 2 \]

That is, we choose

\[c = 7 \text{ and } n_0 = 2 \]

Thus

\[f(n) = O(n^3) \]
Example II

- $f(n) = O(n^4)$ as

 \[6n^3 + 5 \leq 7n^4, \text{ after } n \geq 2 \]

- But $f(n) \neq O(n^2)$

 \[6n^3 + 5 \leq cn^2 \]

 cannot always hold because we can choose large n such that

 \[n^3 > cn^2 \]

Formally we have the following opposite statement:

\[\forall c, n_0 \exists n \geq n_0, f(n) > cg(n) \]
Example III
Consider

\[f(n) = 3n \log_2 n + 5n \log_2 \log_2 n \]

We prove

\[f(n) = O(n \log n) \]

by

\[\log_2 \log_2 n \leq \log_2 n \text{ from } \log_2 n \leq n \]

\[f(n) \leq 8n \log_2 n = 8n \log_2 b \log_b n \]
Note that

$$\frac{\log_2 n}{\log_2 b} = \log_b n$$

So we write

$$f(n) = O(n \log n)$$

as there is no need to write $$\log_2 n$$.
Other properties I

- We have

\[O(n^2) + O(n) = O(n^2) \]

- Formally,

\[f(n) = O(n^2), \ g(n) = O(n) \]
\[\Rightarrow f(n) + g(n) = O(n^2) \]
Other properties II

Proof

\[\exists c_1, n_1, \forall n \geq n_1, f(n) \leq c_1 n^2 \]
\[\exists c_2, n_2, \forall n \geq n_2, g(n) \leq c_2 n \]

Then

\[f(n) + g(n) \leq c_1 n^2 + c_2 n \leq (c_1 + c_2)n^2 \]

after \(n \geq \max(n_1, n_2) \)

Thus we choose

\[c = c_1 + c_2 \text{ and } n_0 = \max(n_1, n_2) \]
Other properties III

- **Definition:**
 \[f(n) = 2^{O(n)} \]
 if \(\exists c, n_0 \) such that
 \[f(n) \leq 2^{cn}, \forall n \geq n_0 \]

- **\(O(1) \):** \(\exists c, n_0 \) such that
 \[f(n) \leq c1, \forall n \geq n_0 \]

Thus
\[f(n) \leq \max\{f(1), \ldots, f(n_0 - 1), c\}, \forall n \]
Other properties IV

That is,

\[f(n) \text{ always } \leq \text{ a constant} \]
Two different concepts:

\(O \): no more than something

\(o \): less than something

Definition

\[f(n) = o(g(n)) \]

if

\[\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0. \]
The definition of this limit:

\[\forall c > 0, \exists n_0, \forall n \geq n_0, \frac{f(n)}{g(n)} \leq c. \]

\(O \) versus \(o \):

\[\exists c > 0, \exists n_0, \forall n \geq n_0, f(n) \leq c g(n) \]

\[\forall c > 0, \exists n_0, \forall n \geq n_0, f(n) \leq c g(n) \]

The \(\forall c \) causes \(o \) to be something smaller
\[\sqrt{n} = o(n) \]

\[
\lim_{n \to \infty} \frac{\sqrt{n}}{n} = \lim_{n \to \infty} \frac{1}{\sqrt{n}} = 0
\]

\[f(n) \neq o(f(n)) \]

\[
\lim_{n \to \infty} \frac{f(n)}{f(n)} = 1 \neq 0
\]