In Chapter 3 we showed that various TMs are equivalent.

For example, single-tape and multi-tape TMs are equivalent.

However, their “time complexities” are different.
Theorem 7.8
Let $t(n) \geq n$. For a $t(n)$ multi-tape TM
$\Rightarrow \exists$ equivalent $O(t(n)^2)$ single-tape TM

Idea for the proof: similar to how we proved their equivalence

We will show that simulating each step of a multi-tape TM takes $O(t(n))$ on a single-tape TM

Let k be the number of tapes

How did we simulate a multi-tape TM?
Complexity of Multi-tape TM II

CPU

0 1 1 0 \ldots tape 1

a a c a \ldots tape 2

0 0 1 1 \ldots tape 3

CPU

0 i 1 \ldots # a a c \ldots # 0 0 \ldots
To simulate each step of multi-tape TM, we scan to know where heads point to and do the update.

However, we may have to right shift the tape.

So we need to know the tape length. It is

\[k \times O(t(n)) = O(t(n)) \]

Note that each tape of multi-tape TM has \(O(t(n)) \) length. Why?

A \(t(n) \) multi-tape TM generates \(O(t(n)) \) contents in \(O(t(n)) \) time.
Thus the cost of simulating each step of multi-tape TM on a single-tape TM is $O(t(n))$

There are $O(t(n))$ multi-tape TM steps, so the total cost is

$$O(t(n)) \times O(t(n)) = O(t(n)^2)$$
Remember NTM is a decider if all branches halt on all inputs

Definition of NTM time complexity \(t(n) \): maximum \(\# \) of steps the machine uses for any path from root to a leaf

Theorem 7.11

Let \(t(n) \geq n \). For a \(t(n) \) NTM (single tape)

\[\Rightarrow \exists \text{ a } 2^{O(t(n))} \text{ TM (single tape)} \]

Assume \(b \) is the maximal number of branches at each layer
Recall our way of doing the simulation is by the following three-tape TM:

- Tape 1: \[0\, 1\, 1\, 1\, 0 \ldots\]
- Tape 2: \[\times\, \times\, 1\, 1\, 0 \ldots\]
- Tape 3: \[1\, 2\, 3\, 2\, 3 \ldots\]
Complexity of Nondeterministic TM III

- We use a breadth-first way for the simulation
- That is, after one layer is finished, we do the next
- Tape 3: all possible paths so far
- Total number of nodes in the tree:

\[O(b^{t(n)}) \]

- Tape 2: run the original input \(w \) from root to one node in the tree
- Cost of running from root to one node in tape 2: \(O(t(n)) \)
Complexity of Nondeterministic TM IV

- Update of tape 3: $O(b^{t(n)})$
- Total cost $\leq O(b^{t(n)})$ for each node
- Total time:

 \[
 \text{\# nodes} \times \text{cost per node} = O(b^{t(n)}) \times O(b^{t(n)}) = O((b^{2t(n)}) = 2^{O(t(n))}
 \]

- Note that in the above equality we used

 \[
 b^{t(n)} \times b^{t(n)} = b^{2t(n)} = 2^\log_2 b^{2t(n)} = 2(\log_2 b)(2t(n))
 \]
This is by a 3-tape TM

To use a single-tape TM to simulate a 3-tape one, we need

\[(2^{O(t(n))})^2 = 2^{O(t(n))}\]

cost because

\[(2^{O(t(n))})^2 \leq (2^{ct(n)})^2 = 2^{2ct(n)} = 2^{O(t(n))}\]