Polynomial vs. Exponential

- Big difference
- $n^3 : n = 1000 \Rightarrow 10^9$
- $2^n : n = 1000 \Rightarrow 2^{1000} = 10^{1000 \log_{10} 2} \approx 10^{300} \gg 10^9$
- An algorithm with such complexity is not practical
Definition 7.2 I

- P: decidable languages in polynomial time on a deterministic (single-tape) TM

\[P = \bigcup_k \text{TIME}(n^k). \]

- How important this is?

 P: "roughly" corresponds to problems solvable on a computer
PATH problem

\[\text{PATH} = \{ \langle G, s, t \rangle \mid G \text{ is a directed graph s.t. } \exists \text{ path from } s \text{ to } t \} \]

Example:
There is a path from $s = 1$ to $t = 3$

- We will prove that $\text{PATH} \in P$
- Let’s start with a brute force way
 1. m: number of nodes
 2. $|\text{path}| \leq m$
 3. $\#\text{paths} \leq m^m$
 4. sequentially check if one has s to t
 5. the cost is exponential

- A polynomial algorithm
 input $\langle G, s, t \rangle$, G includes nodes and edges
 1. mark s
repeat until no new node can be marked
scan all edges, if for an edge \(\langle a, b \rangle \):
\(a \) is marked but \(b \) is not \(\Rightarrow \) mark \(b \)

\(t \) marked \(\Rightarrow \) accept
otherwise \(\Rightarrow \) reject

- # of “2”: at most \(m \) (if no newly marked, stop)
- each “2”: \(\#\text{edges}=m^2 \)
- cost to mark a node: polynomial
- whole algorithm: polynomial
Relatively Prime

- x, y are relatively prime if they have no common (> 1) factors
- Example: 10 and 21

$$10 = 2 \times 5, 21 = 3 \times 7$$

- Example: 10 and 22

$$10 = 2 \times 5, 22 = 3 \times 11$$

They are not relatively prime

- Problem: test if two numbers are relatively prime
Euclidean Algorithm I

- It can be used to find gcd (greatest common divisor)
- Example: gcd(18, 24) = 6
- We have
 \[\text{gcd}(x, y) = 1 \iff x, y \text{ relatively prime} \]
- Algorithm: input \(\langle x, y \rangle \)
 1. Repeat if \(y \neq 0 \)
 \[x \leftarrow x \mod y \]
 exchange \(x \) and \(y \)
 2. Output \(x \)
Euclidean Algorithm II

- The output is the gcd
- Why this works

\[18 = ab \]
\[24 = ac \]
\[24 = 18d + e \]
\[ac = abd + e \]
\[e = a(c - bd) \]
\[a \mid 24 - 18 \]

- Is this algorithm polynomial?
If $x > y$

$$x \mod y \leq x/2$$

Proof

if $x/2 \geq y$, $x \mod y \leq y \leq x/2$

if $x/2 < y$, $x \mod y = x - y \leq x/2$

Each iteration
Euclidean Algorithm IV

x or y reduced at least by half

$$\#\text{iter} \leq 2 \max(\log_2 x, \log_2 y) = O(n)$$

n: length of input (x and y are stored as bit strings), $\log_2 x + \log_2 y$

- Each iteration
 - $x \mod y$: polynomial
 - see: $\text{1100011} \mod \text{101}$
 - $\#\text{digit} \leq O(n)$: each digit $\leq O(n)$
 - exchange x and y: polynomial
Context-free language $\in P$
Th 4.8: CFL decidable
Proof omitted