Big difference

- \(n^3 : n = 1000 \Rightarrow 10^9 \)
- \(2^n : n = 1000 \Rightarrow 2^{1000} = 10^{1000 \log_{10} 2} \approx 10^{300} \gg 10^9 \)

An algorithm with such complexity is not practical
Definition 7.2 I

- P: decidable languages in polynomial time on a deterministic (single-tape) TM

$$P = \bigcup_k \text{TIME}(n^k).$$

- How important this is?
 - P: “roughly” corresponds to problems solvable on a computer
PATH problem 1

PATH = \{ \langle G, s, t \rangle \mid G \text{ is a directed graph such that } \exists \text{ path from } s \text{ to } t \}\}
PATH problem II

There is a path from $s = 1$ to $t = 3$

- We will prove that $\text{PATH} \in P$
- Let’s start with a brute force way
 1. m: # nodes
 2. $|\text{path}| \leq m$
 3. $\#\text{paths} \leq m^m$
 4. sequentially check if one has s to t
 5. the cost is exponential

- A polynomial algorithm
 1. input $\langle G, s, t \rangle$, G includes nodes and edges
 2. mark s
repeat until no new node can be marked
scan all edges, if for an edge \(\langle a, b \rangle \):
\begin{itemize}
 \item \(a \) is marked but \(b \) is not \(\Rightarrow \) mark \(b \)
\end{itemize}
\(t \) marked \(\Rightarrow \) accept
otherwise \(\Rightarrow \) reject
\begin{itemize}
 \item \# of “2”: at most \(m \) (if no newly marked, stop)
 \item each “2”: \#edges=\(m^2 \)
 \item cost to mark a node: polynomial
 \item whole algorithm: polynomial
Relatively Prime I

- x, y are relatively prime if they have no common (> 1) factors
- Example: 10 and 21

 $10 = 2 \times 5, 21 = 3 \times 7$

- Example: 10 and 22

 $10 = 2 \times 5, 22 = 3 \times 11$

They are not relatively prime

- Problem: test if two numbers are relatively prime
Euclidean Algorithm I

- It can be used to find gcd (greatest common divisor)
- Example: gcd(18,24) = 6
- We have

 \[\text{gcd}(x, y) = 1 \iff x, y \text{ relatively prime} \]

- Algorithm: input \(\langle x, y \rangle \)
 1. Repeat if \(y \neq 0 \)
 \[
 x \leftarrow x \mod y
 \]
 exchange \(x \) and \(y \)
 2. Output \(x \)
Euclidean Algorithm II

- The output is the gcd
- Why this works

\[18 = ab \]
\[24 = ac \]
\[24 = 18d + e \]
\[ac = abd + e \]
\[e = a(c - bd) \]
\[a \mid 24 - 18 \]

- Is this algorithm polynomial?
Euclidean Algorithm III

- If $x > y$

 \[x \mod y \leq x/2 \]

 Proof

 - if $x/2 \geq y$, $x \mod y \leq y \leq x/2$
 - if $x/2 < y$, $x \mod y = x - y \leq x/2$

- Each iteration
Euclidean Algorithm IV

\[x \text{ or } y \text{ reduced at least by half} \]

\[\#\text{iter} \leq 2 \max(\log_2 x, \log_2 y) = O(n) \]

\(n \): length of input \((x \text{ and } y \text{ are stored as bit strings}), \log_2 x + \log_2 y\)

- Each iteration
 - \(x \mod y\): polynomial
 - see: \(1100011 \mod 101\)
 - \#digit \(\leq O(n)\): each digit \(\leq O(n)\)

exchange \(x\) and \(y\): polynomial
Th 7.16 I

- Context-free language $\in P$
- Th 4.8: CFL decidable
- Proof omitted