Polynomial vs. Exponential I

- Big difference
- $n^3 : n = 1000 \Rightarrow 10^9$
- $2^n : n = 1000 \Rightarrow 2^{1000} = 10^{1000 \log_{10} 2} \approx 10^{300} \gg 10^9$
- An algorithm with such complexity is not practical
Definition 7.2 I

- P: decidable languages in polynomial time on a deterministic (single-tape) TM

$$P = \bigcup_k \text{TIME}(n^k).$$

- How important this is?

P: "roughly" corresponds to problems solvable on a computer
PATH problem 1

\[\text{PATH} = \{ \langle G, s, t \rangle \mid G \text{ is a directed graph} \quad \text{s.t. } \exists \text{ path from } s \text{ to } t \} \]
There is a path from $s = 1$ to $t = 3$

- We will prove that $\text{PATH} \in \mathcal{P}$
- Let’s start with a brute force way
 1. m: number of nodes
 2. $|\text{path}| \leq m$
 3. $\#\text{paths} \leq m^m$
 4. sequentially check if one has s to t
- the cost is exponential
- A polynomial algorithm
 input $\langle G, s, t \rangle$, G includes nodes and edges
PATH problem III

1. mark s

2. repeat until no new node can be marked
 scan all edges, if for an edge \(\langle a, b \rangle \):
 a is marked but b is not \(\Rightarrow \) mark b

3. \(t \) marked \(\Rightarrow \) accept
 otherwise \(\Rightarrow \) reject

- \# of steps in the main loop: at most \(m \) (if no newly marked, stop)
- at each step, need to scan \# edges \(\leq m^2 \)
- cost to mark a node: polynomial
- whole algorithm: polynomial
Relatively Prime I

- x, y are relatively prime if they have no common (> 1) factors
- Example: 10 and 21

 $10 = 2 \times 5, 21 = 3 \times 7$

- Example: 10 and 22

 $10 = 2 \times 5, 22 = 2 \times 11$

 They are not relatively prime

- Problem: test if two numbers are relatively prime
Euclidean Algorithm I

- It can be used to find gcd (greatest common divisor)
- Example: gcd(18,24)=6
- We have
 \[\text{gcd}(x, y)=1 \iff x, y \text{ relatively prime} \]
- Algorithm: input \(\langle x, y \rangle\)
 1. Repeat if \(y \neq 0\)
 \[x \leftarrow x \mod y \]
 exchange \(x\) and \(y\)
 2. Output \(x\)
Euclidean Algorithm II

- The output is the gcd
- Note that in the beginning we don’t need $x \geq y$

If $x < y$, then

$x = x \mod y$

and

(x, y) becomes (y, x)
Euclidean Algorithm III

Why this works

\[18 = ab \]
\[24 = ac \]
\[24 = 18d + e \]
\[ac = abd + e \]
\[e = a(c - bd) \]
\[a \mid 24 - 18d \]

Is this algorithm polynomial?

At each iteration, \(x \) or \(y \) reduced at least by half
Euclidean Algorithm IV

- If $x > y$

 $$x \mod y \leq x/2$$

 Proof

 if $x/2 \geq y$, $x \mod y \leq y \leq x/2$

 if $x/2 < y$, $x \mod y = x - y \leq x/2$

- Therefore,

 $$\#\text{iterations} \leq 2 \max(\log_2 x, \log_2 y) = O(n)$$

 n: length of input (x and y are stored as bit strings), $\log_2 x + \log_2 y$
Euclidean Algorithm V

- Each iteration
 \[x \mod y : \text{polynomial} \]
 see: \[1100011 \% 101 \]
 \#digit \(\leq O(n)\): each digit \(\leq O(n)\)
 exchange \(x\) and \(y\): polynomial
Context-free language $\in P$
Proof omitted