Polynomial vs. Exponential

- Big difference
- \(n^3 : n = 1000 \Rightarrow 10^9 \)
- \(2^n : n = 1000 \Rightarrow 2^{1000} = 10^{1000 \log_{10} 2} \approx 10^{300} \gg 10^9 \)
- An algorithm with such complexity is not practical
Definition 7.2

P: decidable languages in polynomial time on a deterministic (single-tape) TM

$$P = \bigcup_k \text{TIME}(n^k).$$

- How important this is?
 - P: “roughly” corresponds to problems solvable on a computer
PATH problem I

\[
\text{PATH} = \{ \langle G, s, t \rangle \mid G \text{ is a directed graph s.t. } \exists \text{ path from } s \text{ to } t \}\}

- Example:
There is a path from $s = 1$ to $t = 3$

- We will prove that $\text{PATH} \in P$

- Let’s start with a brute force way
 1. m: # nodes
 2. $|\text{path}| \leq m$
 3. $\# \text{paths} \leq m^m$
 4. sequentially check if one has s to t

- the cost is exponential

- A polynomial algorithm

 input $\langle G, s, t \rangle$, G includes nodes and edges
PATH problem III

1. mark \(s \)
2. repeat until no new node can be marked
 scan all edges, if for an edge \(\langle a, b \rangle \):
 - \(a \) is marked but \(b \) is not \(\Rightarrow \) mark \(b \)
3. \(t \) marked \(\Rightarrow \) accept
 otherwise \(\Rightarrow \) reject

- \# of steps in the main loop: at most \(m \) (if no newly marked, stop)
- at each step, need to scan \(\# \text{edges} = m^2 \)
- cost to mark a node: polynomial
- whole algorithm: polynomial
Relatively Prime I

- x, y are relatively prime if they have no common (> 1) factors
- Example: 10 and 21

 $10 = 2 \times 5, 21 = 3 \times 7$

- Example: 10 and 22

 $10 = 2 \times 5, 22 = 2 \times 11$

 They are not relatively prime
- Problem: test if two numbers are relatively prime
Euclidean Algorithm I

- It can be used to find gcd (greatest common divisor)
- Example: $\gcd(18,24)=6$
- We have
 \[
 \gcd(x, y)=1 \iff x, y \text{ relatively prime}
 \]
- Algorithm: input $\langle x, y \rangle$
 1. Repeat if $y \neq 0$
 \[
 x \leftarrow x \mod y
 \]
 exchange x and y
 2. Output x
Euclidean Algorithm II

- The output is the gcd
- Note that in the beginning we don’t need $x \geq y$

If $x < y$, then

$$x = x \mod y$$

and

$$(x, y) \text{ becomes } (y, x)$$
Euclidean Algorithm III

- Why this works

\[18 = ab \]
\[24 = ac \]
\[24 = 18d + e \]
\[ac = abd + e \]
\[e = a(c - bd) \]
\[a \mid 24 - 18d \]

- Is this algorithm polynomial?
- At each iteration, \(x \) or \(y \) reduced at least by half
Euclidean Algorithm IV

- If \(x > y \)

 \[
 x \mod y \leq x/2
 \]

 Proof

 if \(x/2 \geq y \), \(x \mod y \leq y \leq x/2 \)

 if \(x/2 < y \), \(x \mod y = x - y \leq x/2 \)

- Therefore,

 \[
 \#\text{iterations} \leq 2 \max(\log_2 x, \log_2 y) = O(n)
 \]

 \(n \): length of input (\(x \) and \(y \) are stored as bit strings), \(\log_2 x + \log_2 y \)
Euclidean Algorithm V

- Each iteration

 \[x \mod y: \text{polynomial} \]

 see: 1100011 \(\%\) 101

 \#digit \(\leq O(n)\): each digit \(\leq O(n)\)

 exchange \(x\) and \(y\): polynomial
Th 7.16 I

- Context-free language $\in P$
- Proof omitted