Polynomial verifier \iff polynomial NTM

Idea:

\implies NTM by guessing certificate

\impliedby using NTM’s accepting branch as certificate

Proof:

\implies: now we have a verifier V in time n^k
Recall the definition below

\[A = \{ w \mid V \text{ accepts } \langle w, c \rangle \text{ for some strings } c \} \]

We have

\[|c| \leq n^k \]

because to handle \(\langle w, c \rangle \) in \(n^k \), \(|c| \) should be bounded by \(n^k \)

- Use an NTM to
 1. nondeterministically select \(c \)
 2. run \(V \) on \(\langle w, c \rangle \)
That is, run c in parallel and each is polynomial

- We have that for any $w \in A$, the NTM accepts it in polynomial time

- “\Leftarrow”: now w is accepted by a polynomial NTM

Let c be the accepting branch

Note that for polynomial NTM, each branch is polynomial

Then we have a verifier V that handles input $\langle w, c \rangle$ in polynomial time

Note: the definition of V requires only “some c.”

So finding one is sufficient
Given \(x_1, \ldots, x_k \) and \(t \), is sum of a subset \(= t \)?

Formally

\[
\{ \langle s, t \rangle \mid s = \{ x_1, \ldots, x_k \} \text{ and } \exists \{ y_1, \ldots, y_l \} \subset \{ x_1, \ldots, x_k \} \text{ such that } \sum y_i = t \} \]

Example

\[\langle \{ 4, 11, 16, 21, 27 \}, 25 \rangle \text{ OK as } 4 + 21 = 25 \]
Note: allow repetition here

\[\langle \{4, 11, 11, 16, 21, 27\}, 25 \rangle \]

We prove that this problem is NP

Idea: the subset is the certificate.

Consider any input

\[\langle \langle s, t \rangle, c \rangle \]

We check if \(\sum c_i = t \)
check if all $c_i \in S$

If both pass, accept; otherwise, reject

Here

length of $c < \text{length of } s$

The verification can be done in polynomial time
Roughly

P: problems decided quickly

NP: problems verified quickly

Question: is $P = NP$?

This is one of the greatest unsolved problems

Most believe $P \neq NP$
It has been shown that some problems in NP are related. For certain NP problems:

- If there exists a polynomial algorithm for one NP problem, then $P = NP$.

These problems are called NP-complete problems. They are useful to study the issue of P versus NP.

- To prove $P \neq NP$: only need to focus on NP-complete problems.
- To prove $P = NP$: need only polynomial algorithms for an NP-complete problem.