For some problems it is difficult to find an algorithm in P.

We first discuss an example of finding a Hamiltonian Path.

Definition: for a given path find a path going through all nodes once.

Fig 7.17
Hamiltonian Path II

\[\text{HAMPATH} = \{ \langle G, s, t \rangle \mid G : \text{directed, a Hamiltonian path from } s \text{ to } t \} \]

A brute-force way: checking all possible paths
But the number is exponential
Polynomial verification
for a path, in P time \(\Rightarrow\) a Hamiltonian path or not
This is an example where verification is easier than determination
We discuss another example where verification is easier than determination

An integer is composite if

\[x = pq, \ p > 1, \ q > 1 \]

- Given \(x \), difficult to find \(p, q \)
- Given \(x, p, q \) easily verify \(x = pq \) or not
Some problems are difficult so even a polynomial verifier cannot be easily obtained.

HAMPATH: given \(\langle G, s, t \rangle \) no Hamiltonian path from \(s \) to \(t \)

Verification may still be difficult.

Given \(s \) and \(t \) it seems we still need to check all paths.
Verifier I

- Definition: an algorithm V is a verifier of a language A if

$$A = \{ w \mid V \text{ accepts } \langle w, c \rangle \text{ for some strings } c \}$$

- Example: compositeness. V accepts $\langle w, c \rangle = \langle x, p \rangle$, where p is a divisor

- Example: Hamiltonian path. V accepts

$$\langle w, c \rangle = \langle \langle G, s, t \rangle, \text{ a path from } s \text{ to } t \rangle$$

- c is called a “certificate”
Verifier II

- Definition: a polynomial verifier if it takes polynomial time of $|w|$
- A: polynomially verifiable if \exists a polynomial verifier
- Note that we measure time on $|w|$ without considering $|c|$
- For a polynomial verifier, $|c|$ should be in polynomial of $|w|$
 Otherwise, reading $|c|$ already non-polynomial
NP is a class of languages

Definition: a language \in NP if it has a polynomial verifier

We will prove that this definition is equivalent to that the language is decided by nondeterministic polynomial TM

This is where the name comes from

Some use this as the definition

Note that for nondeterministic TM time is by checking the longest branch
Definition:

\[\text{NTIME}(t(n)) = \{ L \mid L \text{ decided by } O(t(n)) \text{ nondeterministic TM} \} \]

\[\text{NP} = \bigcup_k \text{NTIME}(n^k) \]
A list $p_1 \cdots p_m$ is nondeterministically determined
For each list:

1. Check repetitions
2. Check $s = p_1; t = p_m$
3. Check that for $1 \ldots m - 1$, (p_i, p_{i+1}) is an edge of G

Cost on each list is polynomial:

- repetitions: $O(m^2)$
- $s = p_1, t = p_m : O(m)$
- edge check: $O(m^2)$
Polynomial verifier ⇔ polynomial NTM

Idea:

“⇒” NTM by guessing certificate
“⇐” using NTM’s accepting branch as certificate

Proof:

“⇒”: now we have a verifier V in time $O(n^k)$

Recall the definition below

$$A = \{w \mid V \text{ accepts } \langle w, c \rangle \text{ for some strings } c\}$$

We have

$$|c| \leq n^k$$
Use an NTM to
1. nondeterministically select c
2. run V on $\langle w, c \rangle$

That is, run c in parallel and each is polynomial

We have that for any $w \in A$, the NTM accepts it in polynomial time

“\iff”: now w is accepted by a polynomial NTM
Let c be the accepting branch
Note that for polynomial NTM, each branch is polynomial
Then we have a verifier V that handles input $\langle w, c \rangle$ in polynomial time.

Note: the definition of V requires only "some c.”

So finding one is sufficient.
SUBSET-SUM I

- Given x_1, \ldots, x_k and t, is sum of a subset $= t$?
- Formally

$$\{\langle s, t \rangle \mid s = \{x_1, \ldots, x_k\} \text{ and } \exists \{y_1, \ldots, y_l\} \subset \{x_1, \ldots, x_k\} \text{ such that } \sum y_i = t\}$$

- Example

$$\langle\{4, 11, 16, 21, 27\}, 25\rangle \text{ OK as } 4 + 21 = 25$$
Note: allow repetition here

\[\langle \{4, 11, 11, 16, 21, 27\}, 25 \rangle \]

We prove that this problem is NP

Consider any input \(\langle \langle s, t \rangle, c \rangle \)

we

1. check if \(\sum c_i = t \)
2. check if all \(c_i \in S \)
Here

length of $c < \text{ length of } s$

The verification can be done in polynomial time
P vs. NP I

- Roughly
 - P: problems decided quickly
 - NP: problems verified quickly
- Question: is $P = NP$?
 - This is one of the greatest unsolved problems
- Most believe $P \neq NP$
It has been shown that some problems in NP are related.

For certain NP problems:
- If there exists a polynomial algorithm of one NP \(\Rightarrow P = NP \)

These problems are called NP-complete problems.

They are useful to study the issue of P versus NP.

To prove \(P \neq NP \): only need to focus on NP-complete problems.

To prove \(P = NP \): need only polynomial algorithms for an NP-complete problem.