Recall the halting problem is

$$A_{TM} = \{(M, w) \mid M : \text{TM, accepts } w\}$$

We prove it is undecidable by contradiction.

Assume there is an $H$ that is a decider for $A_{TM}$.

Then $H$ satisfies

$$H(\langle M, w \rangle) = \begin{cases} 
\text{accept} & \text{if } M \text{ accepts } w \\
\text{reject} & \text{otherwise}
\end{cases}$$

Construct a new TM $D$ with $H$ as a subroutine.
Halting problem undecidable II

For $D$, the input is $\langle M \rangle$, where $M$ is a TM.
It runs $H$ on $\langle M, \langle M \rangle \rangle$ and outputs the opposite result of $H$.

The machine $D$ satisfies

$$D(\langle M \rangle) = \begin{cases} 
\text{accept} & \text{if } M \text{ rejects } \langle M \rangle \\
\text{if } M \text{ accepts } \langle M \rangle & \\
\text{reject} & \text{if } M \text{ accepts } \langle M \rangle 
\end{cases}$$

But we get a contradiction

$$D(\langle D \rangle) = \begin{cases} 
\text{accept} & \text{if } D \text{ rejects } \langle D \rangle \\
\text{reject} & \text{if } D \text{ accepts } \langle D \rangle 
\end{cases}$$
We said earlier that the diagonalization method is used for the proof. Is that the case?

We show that indeed it is used.
Set of TMs is countable so we can have

<table>
<thead>
<tr>
<th></th>
<th>( \langle M_1 \rangle )</th>
<th>( \langle M_2 \rangle )</th>
<th>( \langle M_3 \rangle )</th>
</tr>
</thead>
<tbody>
<tr>
<td>( M_1 )</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>( M_2 )</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
</tbody>
</table>

Blank entries: unknown if reject or loop

But \( H \) knows the solution as it is a decider

<table>
<thead>
<tr>
<th></th>
<th>( \langle M_1 \rangle )</th>
<th>( \langle M_2 \rangle )</th>
<th>( \langle M_3 \rangle )</th>
</tr>
</thead>
<tbody>
<tr>
<td>( M_1 )</td>
<td>A</td>
<td>R</td>
<td>A</td>
</tr>
<tr>
<td>( M_2 )</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
</tbody>
</table>
Diagonalization in the proof II

- $D$ outputs opposite of diagonal entries

<table>
<thead>
<tr>
<th></th>
<th>$\langle M_1 \rangle$</th>
<th>$\langle M_2 \rangle$</th>
<th>$\ldots$</th>
<th>$\langle D \rangle$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M_1$</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$M_2$</td>
<td></td>
<td>R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$D$</td>
<td></td>
<td></td>
<td>$\ldots$</td>
<td>$?$</td>
</tr>
</tbody>
</table>
co-Turing-recognizable Language I

- Definition: a language is co-Turing-recognizable if its complement is Turing-recognizable
- Theorem 4.22
  Decidable ⇔ Turing-recognizable and co-Turing-recognizable
- Why complement may not be Turing-recognizable?
  Note that “recognizable” means any
  \( w \in \text{language} \)
  is accepted by the machine in a finite steps
- That is, no infinite loop
Example:

\( A_{TM} \) Turing-recognizable but not decidable

\( \overline{A_{TM}} \) not Turing-recognizable

\[
w \in \overline{A_{TM}}
\]

\( \Rightarrow \) reject or loop

Why not

Turing-recognizable

\( \Rightarrow \) complement Turing-recognizable
What if we swap $q_{accept}, q_{reject}$?

If

$$a \notin A$$ and loop occurs

then

$$a \in \overline{A},$$ but TM still loops

Recall that $\overline{A}$ is Turing-recognizable means that any $a \in \overline{A}$ can be recognized in a finite $\#$ of steps.

Proof of Theorem 4.22

\[ \Rightarrow \]

Decidable $\Rightarrow$ Turing-recognizable
Complement $\Rightarrow$ decidable $\Rightarrow$ Turing-recognizable

“$\iff$” Now $A, \overline{A}$ are Turing-recognizable by two machines $M_1, M_2$.

Construct a new machine $M$: for any input $w$

1. Run $M_1, M_2$ in parallel
2. $M_1$ accept $\Rightarrow$ accept, $M_2$ accept $\Rightarrow$ reject

Never infinity loop

$M$ accepts all strings in $A$, reject all not in $A$

Thus $A$ is decidable with a decider $M$