Decidability and CFL I

- CFG

\[A_{CFG} = \{ \langle G, w \rangle \mid G : CFG, \text{ generates } w \} \]

- We prove that \(A_{CFG} \) is decidable
- But an issue is the \(\infty \) possible derivations of a CFG
- For example,
 \[A \to B, B \to A \]

- Chomsky normal form

\[A \to BC \]
\[A \to a \]
Decidability and CFL II

- Any w, $|w| = n$, derivation in exactly $2n - 1$ steps
- If q: # rules, check q^{2n-1} branches
- Proof
 1. Convert G to Chomsky
 2. Check all q^{2n-1} branches
- Results apply to PDA as well
\[E_{CFG} = \{ \langle G \rangle \mid G : CFG, L(G) = \emptyset \} \]

- idea: bottom up setting to see if any string can be generated from the start variable. From

\[A \rightarrow a \]

We search if \(\exists \)

\[B \rightarrow A \]

- Proof:
1. Mark all terminals
2. Repeat until no new variables marked
 if

 \[A \to U_1 \cdots U_k \]

 and

 all \(U_1, \ldots, U_k \) marked

 \[\Rightarrow \text{mark } A \]
3. If start state marked, accept
 Otherwise, reject
EQ_{CFG} I

$EQ_{CFG} = \{ \langle G, H \rangle \mid G, H : CFG, L(G) = L(H) \}$

- Remember that EQ_{DFA} is decidable
- However, we cannot apply the same proof as CFL is not closed for \cap and complementation
- It’s proved in Chapter 5 that this language is not decidable
- We do not discuss details
CFL decidable I

- This question different from A_{CFG} decidable or not
- How about converting PDA to a TM?
- For nondeterministic PDA we can do NTM
- But nondeterministic PDA may have ∞-long branches
 TM runs forever
- So converting PDA to TM does not really work
- A proof that works:
 Find grammar G for this CFL
 Run TM for $\langle G, w \rangle$ by using A_{CFG}
Classes of languages I

- Fig 4.10

Diagram showing the hierarchy of classes of languages:
- Regular
- Context-free
- Decidable
- Turing-recognizable