Decidability and CFL I

Acceptance problem of CFG

$$A_{CFG} = \{\langle G, w \rangle \mid G : CFG, \text{ generates } w\}$$

- We prove that A_{CFG} is decidable
- ullet But an issue is the ∞ possible derivations of a CFG
- For example,

$$A \rightarrow B, B \rightarrow A$$

Chomsky normal form

$$A \rightarrow BC$$

 $A \rightarrow a$

Decidability and CFL II

- Any w, |w| = n, derivation in exactly 2n 1 steps
- If q is the # rules, check all q^{2n-1} possibilities
- Proof
 - Convert G to Chomsky
 - ② Check all q^{2n-1} possibilities
- Results apply to PDA as well: for PDA we have a finite procedure to generate a CFG.

E_{CFG} |

$$E_{CFG} = \{\langle G \rangle \mid G : CFG, L(G) = \emptyset\}$$

• idea: bottom up setting to see if any string can be generated from the start variable. From

$$A \rightarrow a$$

We search if there is a rule

$$B \rightarrow A$$

$E_{CFG} \parallel$

- Proof:
 - Mark all terminals
 - Repeat until no new variables are marked if

$$A \rightarrow U_1 \cdots U_k$$

and

all
$$U_1, \ldots, U_k$$
 marked

- \Rightarrow mark A
- If start variable is not marked, accept Otherwise, reject

E_{CFG} |||

- Number of iterations is finite: bounded by the number of variables
- Each iteration is a finite procedure: we check all rules

EQ_{CFG} I

$$EQ_{CFG} = \{\langle G, H \rangle \mid G, H : CFG, L(G) = L(H)\}$$

- Remember that EQ_{DFA} is decidable
- However, we cannot apply the same proof as CFL is not closed for ∩ and complementation
- It's proved in Chapter 5 that this language is not decidable
- We do not discuss details

CFL decidable I

- This question is different from A_{CFG} decidable or not
- How about converting PDA to a TM?
- For nondeterministic PDA we can do NTM
- But nondeterministic PDA may have ∞-long branches
- Specifically, some branches of the PDA's computation may go on forever, reading and writing the stack without ever halting.
- Then TM runs forever
- So converting PDA to TM does not really work

CFL decidable II

• A proof that works: Find grammar G for this CFL Run TM for $\langle G, w \rangle$ by using A_{CFG}

Classes of languages I

• Fig 4.10

