Now we have algorithms
We want to check problems solvable or not by computers
Need a TM to decide it
i.e., accept/reject in a finite number of steps
We will show some examples
Acceptance Problems for DFA I

\[A_{DFA} = \{ \langle B, w \rangle \mid B \text{ is a DFA that accepts } w \} \]

- \(\langle B, w \rangle \) is the input

 Note that a DFA can be represented as a string \((Q, \Sigma, \ldots)\)

- Is \(A_{DFA} \) decidable?

- Idea: input \(\langle B, w \rangle \)

 1. simulate \(B \) on \(w \)
 2. ends in an accept state \(\Rightarrow \) accept

 otherwise \(\Rightarrow \) reject
Proof of A_{DFA} I

- Put

 $$B = \langle Q, \Sigma, \delta, q_0, F \rangle$$

 into a tape

- Check if $w \in \Sigma^*$ and B a valid DFA

- Simulate w according to δ

- After processing the last element of w, check if in a final state
\[A_{NFA} = \{ \langle B, w \rangle \mid B \text{ is an NFA that accepts } w \} \]

- We can convert \(B \) to a DFA and use the procedure for \(A_{DFA} \)
- It’s like to use the procedure for \(A_{DFA} \) as a subroutine
$A_{REX} = \{ \langle R, w \rangle \mid R : \text{regular expression generates } w \}$

- It’s similar
- We convert R to a DFA first
- Recall that we had a procedure to convert R to an NFA. Then we can convert the NFA to a DFA
- The key is that the conversion is a finite procedure
$E_{DFA} = \{ \langle A \rangle \mid A : DFA, L(A) = \emptyset \}$

- i.e. A accepts nothing
- Idea:
 DFA accepts something
 \iff reaching a final state from q_0 after several links
- procedure
 1. mark q_0
repeat until no new state marked
mark all

\[a \rightarrow b, \]

where \(a \) has been marked

if no \(q \in F \) marked, accept. otherwise, reject

Example: a state diagram with 3 nodes and the following connections

\[1 \rightarrow 2, 3 \]
Marked states in running the procedure

1
12
12

- Each iteration: at least one new state marked
- At most n iterations: $n \neq \# \text{ states}$
\(EQ_{DFA} \)

\[EQ_{DFA} = \{ \langle A, B \rangle \mid A, B : DFAs, L(A) = L(B) \} \]

- \(EQ_{DFA} \) is decidable
- Idea for the proof:
 - Let a DFA \(C \) be the exclusive or of \(A \) and \(B \)
 - If \(L(A) = L(B) \)
 - then \(L(C) = \emptyset \)
Exclusive or of A and B

(latex source from https://texample.net/tikz/examples/set-operations-illustrated-with-venn-diagrams/)
Formally

\[L(C) = (L(A) \cap \overline{L(B)}) \cup (\overline{L(A)} \cap L(B)) \]

- \(B\) DFA \(\Rightarrow\) so is \(\overline{B}\)
- \(A, B\) DFA \(\Rightarrow\) so is \(A \cup B, A \cap B\)
- We then use \(E_{DFA}\) to check if \(L(C) = \emptyset\) or not