Chapter 4: Decidability I

- Now we have algorithms
- We want to check problems solvable or not by computers
- Need a TM to decide it
 i.e., accept/reject in finite \# steps
- We will show some examples
Acceptance Problems for DFA I

\[A_{DFA} = \{ \langle B, w \rangle \mid B \text{ is a DFA that accepts } w \} \]

- \(\langle B, w \rangle \) is the input
 - Note that a DFA can be represented as a string \((Q, \Sigma, \ldots)\)
- Is \(A_{DFA} \) decidable?
- Idea: input \(\langle B, w \rangle \)
 1. simulate \(B \) on \(w \)
 2. ends in an accept state \(\Rightarrow \) accept
 otherwise \(\Rightarrow \) reject
Proof of A_{DFA} I

- Put

\[B = \langle Q, \Sigma, \delta, q_0, F \rangle \]

into a tape

- Check if $w \in \Sigma^*$ and B a valid DFA

- Simulate w according to δ after the last element of w

check if in a final state
$A_{NFA} = \{ \langle B, w \rangle \mid B \text{ is an NFA that accepts } w \}$

- We can convert B to a DFA and use the procedure for A_{DFA}
- It’s like to use the procedure for A_{DFA} as a subroutine

\[A_{REX} = \{ (R, w) \mid R: \text{regular expression generates } w \} \]

- It’s similar
- We convert \(R \) to a DFA first
- The key is that the conversion is a finite procedure
\[E_{DFA} = \{ \langle A \rangle \mid A : DFA, L(A) = \emptyset \} \]

- i.e. \(A \) accepts nothing
- Idea:
 - DFA accepts something
 \(\iff \) reaching a final state from \(q_0 \) after several links
- procedure
 - mark \(q_0 \)
repeat until no new state marked
mark all

\[a \rightarrow b, \]

where \(a \) has been marked

if no \(q \in F \) marked, accept. otherwise, reject

Example: a state diagram with 3 nodes and the following connections

\[1 \rightarrow 2, 3 \]
Marked states in running the procedure

1
12
12

- Each iteration: at least one new state marked
- At most n iterations: $n \neq $ states
EQ_{DFA} is decidable

Idea for the proof:
DFA C: exclusive or of A and B
If
$L(A) = L(B)$
then
$L(C) = \emptyset$
$A \cap B$
Formally

\[L(C) = (L(A) \cap \overline{L(B)}) \cup (\overline{L(A)} \cap L(B)) \]

- \(B \) DFA \(\implies \) so is \(\overline{B} \)
- \(A, B \) DFA \(\implies \) so is \(A \cup B, A \cap B \)
- Use \(E_{DFA} \)