Now we have algorithms
We want to check problems solvable or not by computers
Need a TM to decide it
i.e., accept/reject in finite \# steps
We will show some examples
Acceptance Problems for DFA I

\[A_{DFA} = \{ \langle B, w \rangle \mid B \text{ is a DFA that accepts } w \} \]

- \(\langle B, w \rangle \) is the input
 - Note that a DFA can be represented as a string \((Q, \Sigma, \ldots)\)
- Is \(A_{DFA}\) decidable?
- Idea: input \(\langle B, w \rangle\)
 1. simulate \(B\) on \(w\)
 2. ends in an accept state \(\Rightarrow\) accept
 otherwise \(\Rightarrow\) reject
Proof of A_{DFA} I

- Put

$$B = \langle Q, \Sigma, \delta, q_0, F \rangle$$

- into a tape

- Check if $w \in \Sigma^*$ and B a valid DFA

- Simulate w according to δ after the last element of w

- check if in a final state
A_{NFA} is:

$$A_{NFA} = \{ \langle B, w \rangle \mid B \text{ is an NFA that accepts } w \}$$

- We can convert B to a DFA and use the procedure for A_{DFA}
- It’s like to use the procedure for A_{DFA} as a subroutine
\(A_{REX} = \{ \langle R, w \rangle \mid R: \text{regular expression generates } w \} \)

- It’s similar
- We convert \(R \) to a DFA first
- The key is that the conversion is a finite procedure
$E_{DFA} = \{ \langle A \rangle \mid A : DFA, L(A) = \emptyset \}$

i.e. A accepts nothing

Idea:

DFA accepts something
\iff reaching a final state from q_0 after several links

procedure

1. mark q_0
repeat until no new state marked
mark all

\[a \rightarrow b, \]

where \(a \) has been marked

if no \(q \in F \) marked, accept. otherwise, reject

Example: a state diagram with 3 nodes and the following connections

\[1 \rightarrow 2, 3 \]
Marked states in running the procedure

1
12
12

- Each iteration: at least one new state marked
- At most n iterations: n: $\# \text{ states}$
$EQ_{DFA} = \{ \langle A, B \rangle \mid A, B : DFAs, L(A) = L(B) \}$

- EQ_{DFA} is decidable
- Idea for the proof:
 DFA C: exclusive or of A and B
 If $L(A) = L(B)$
 then $L(C) = \emptyset$
(latex source from https://texample.net/tikz/examples/set-operations-illustrated-with-venn-diagrams/)
Formally

\[L(C) = (L(A) \cap \overline{L(B)}) \cup (\overline{L(A)} \cap L(B)) \]

- \(B \) DFA \(\Rightarrow \) so is \(\overline{B} \)
- \(A, B \) DFA \(\Rightarrow \) so is \(A \cup B, A \cap B \)
- Use \(E_{DFA} \)
Decidability and CFL I

- CFG

\[A_{CFG} = \{ \langle G, w \rangle \mid G : CFG, \text{ generates } w \} \]

- We prove that \(A_{CFG} \) is decidable
- But an issue is the \(\infty \) possible derivations of a CFG
- For example,

\[A \rightarrow B, B \rightarrow A \]

- Chomsky normal form

\[A \rightarrow BC \\
A \rightarrow a \]
Decidability and CFL II

- Any $w, |w| = n$, derivation in exactly $2n - 1$ steps
- If q rules, check q^{2n-1} branches

Proof

1. Convert G to Chomsky
2. Check all q^{2n-1} branches

Results apply to PDA as well
\[E_{CFG} = \{ \langle G \rangle \mid G : CFG, L(G) = \emptyset \} \]

- idea: bottom up setting to see if any string can be generated from the start variable. From

\[A \rightarrow a \]

We search if \(\exists \)

\[B \rightarrow A \]

- Proof:
Mark all terminals

Repeat until no new variables marked
if

\[A \to U_1 \cdots U_k \]

and

all \(U_1, \ldots, U_k \) marked

⇒ mark \(A \)

If start state marked, accept
Otherwise, reject
EQ_{CFG}

$$EQ_{CFG} = \{ \langle G, H \rangle \mid G, H : CFG, L(G) = L(H) \}$$

- Remember that EQ_{DFA} is decidable
- However, we cannot apply the same proof as CFL is not closed for \cap and complementation
- It’s proved in Chapter 5 that this language is not decidable
- We do not discuss details
CFL decidable 1

- This question different from A_{CFG} decidable or not
- How about converting PDA to a TM?
- For nondeterministic PDA we can do NTM
- But nondeterministic PDA may have ∞-long branches
 TM runs forever
- So converting PDA to TM does not really work
- A proof that works:
 Find grammar G for this CFL
 Run TM for $\langle G, w \rangle$ by using A_{CFG}