We discuss some variants that have the same power.

The robustness of a type of machines means that its reasonable variants have the same power.

Not a strict definition though.

Example

$$\delta : Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R, S\}$$

S: stay at the same position
Variants of TM II

- It’s equivalent to TM because S can be implemented by L & R moves:

 $$q_1, a \rightarrow q_2, b, S$$

 can be replaced by several rules

 $$q_1, a \rightarrow q_3, b, R$$

 $$q_3, ? \rightarrow q_2, ?, L, \forall ? \in \Gamma$$
Multi-tape TM I

- several tapes
- input: put into tape 1
- others: blank
- transition is applied on all tapes simultaneously

\[\delta : Q \times \Gamma^k \rightarrow Q \times \Gamma^k \times \{L, S, R\}^k \]

\[\delta(q_i, a_1, \ldots, a_k) = (q_j, b_1, \ldots, b_k, L, R, \ldots, L), \]

where \(k \) is the number of tapes

- Looks more powerful but equivalent
Example I

- Job: given \(w = 0^{2n}, n \geq 0 \Rightarrow \) generate \(ww \) in the end
 - Note that we also need to check if \(|w| \) is even
- State diagram
Example II

q_0 to q_1:
Example III

let \square be used to indicate the beginning of the second tape

- loop at q_1:
 - copy w to the second tape

- q_2, q_3:
 1. move to the beginning of the second tape
 2. check if length is $2n$

- If length $2n$, we should be at q_3 instead of q_2 when reaching the beginning of the second tape
Example IV

- Example: input 0000

\[
\begin{array}{cccc}
q_0 & 0 & 0 & 0 \\
q_1 & 0 & 0 & 0 \\
q_2 & 0 & 0 & 0 \\
q_3 & 0 & 0 & 0 \\
q_4 & 0 & 0 & 0 \\
\end{array}
\]

- Example: input 000

\[
\begin{array}{cccc}
q_0 & 0 & 0 & 0 \\
q_1 & 0 & 0 & 0 \\
q_2 & 0 & 0 & 0 \\
q_3 & 0 & 0 & 0 \\
q_4 & 0 & 0 & 0 \\
\end{array}
\]

accepted
Example V

rejected
Multi-tape TM \equiv single TM

- Single TM \subset Multiple TM
- But how about the other direction?
- Show single-tape TM can simulate multi-tape TM
- Fig 3.14

![Diagram of CPU and tapes](image)
Multi-tape TM \equiv single TM II

- #: a symbol to separate tapes
- $\dot{0}$ is used to store the head position of a tape
- Γ becomes different:
 - Γ of original multi-tape TM:

 \[\{0, 1, a, b, \ldots\} \]
Multi-tape TM \equiv single TM III

Γ of new single-tape TM:

$$\{0, \dot{0}, 1, \dot{1}, a, \dot{a}, b, \dot{b}, \ldots\}$$

- One multi-tape transition is split to several transitions
 - We sequentially conduct them
- What if the transition is “move to right (R)” but we see #?
 - \Rightarrow insert a \sqcup and shift things after
- How to do the shift? An illustration:
Multi-tape TM \equiv single TM IV

q_s $\overset{1}{\rightarrow}0$, R
q_0 $\overset{0}{\rightarrow}0$, R
q_1 $\overset{1}{\rightarrow}$, R
q_a $\overset{0}{\rightarrow}1$, R
$\square \overset{0}{\rightarrow}R$
$\square \overset{1}{\rightarrow}$
Γ is finite. Use states to remember the current contents