Nondeterministic TM I

- δ:
 \[\delta : Q \times \Gamma \rightarrow P(Q \times \Gamma \times \{L, R\}) \]

 P: power set

- Example:
 \[
 q_0, a \rightarrow q_1, b, R \\
 \rightarrow q_2, c, L
 \]

- What if
 \[
 q_0, a \rightarrow q_{\text{accept}} \\
 \rightarrow q_{\text{reject}}
 \]
For NTM, w accepted if one branch works
In this sense, unless all branches are finite
NTM \rightarrow accept or endless loop
NTM: like an “acceptor”
Example of NTM I

- $A = \{ w \mid w \text{ contains } aab \}$
- State diagram
Example of NTM II

\[a, b \rightarrow a, b, R \]

- \(q_0 \) to \(q_1 \) on \(a \) \(\rightarrow R \)
- \(q_1 \) to \(q_2 \) on \(a \) \(\rightarrow R \)
- \(q_2 \) to \(q_a \) on \(b \) \(\rightarrow R \)
- \(qr \) to \(q_0 \) on \(\square \) \(\rightarrow R \)
- \(qr \) to \(q_1 \) on \(\square \) \(\rightarrow R \)
- \(qr \) to \(q_2 \) on \(\square \) \(\rightarrow R \)
- \(qr \) to \(qr \) on \(\square \) \(\rightarrow R \)
Example of NTM III

- You may recall that this is an NFA example discussed before
- Only the first node is nondeterministic
Example of NTM I

- \(L = \{0^n \mid n \text{ composite number}\} \)
- From p. 204 of Lewis and Papadimitriou
- Composite number: product of two natural numbers
- Procedure
 - Nondeterministically choose \(p \) and \(q \)
 - Sequentially try \(p \) from 1 to \(n \)
 - Check if \(n = pq \)
 - This can be done by the earlier example

\[\{a^n b^p c^q \mid n = p \times q\} \]
Example of NTM II

- Question: details about “non-deterministically” choose p and q?
- If we sequentially try all (p, q) combinations, then looks like we have a deterministic setting?
- Our generation of p and q can be non-deterministic
- Say we do a copy operation to generate p elements. The TM can have an ϵ link to stop at any time point
Nondeterministic TM \equiv deterministic TM

- easy
 A deterministic TM is a nondeterministic TM
- more difficult
- Like NFA we use a tree for processing the input (# branches finite)
- To traverse a tree we can do
 depth-first search
 or
 breadth-first
Nondeterministic TM \equiv deterministic TM

- If using depth-first search, one branch may lead to ∞ steps
 Then we cannot consider other branches even if the input is accepted
- Thus we should consider breadth-first
- Fig 3.17: a deterministic TM to simulate a nondeterministic TM
Nondeterministic TM \equiv deterministic TM

- Tape 1: input, never altered

Tape 1: 0 1 1 1 0 ...
Tape 2: x x 1 1 0 ...
Tape 3: 1 2 3 2 3 ...

CPU
Nondeterministic TM ≡ deterministic TM

- Tape 2: process one branch
- Tape 3: maintain the tree
- The key is the 3rd tape
- Suppose max ≠ branches 3
 At the 1st step: if contents of 3rd tape are 1 2
 ⇒ can go to 1 or 2 from \(q_0 \)
- The tree keeps growing. For example,
 1 2 12 13 2 12 13 21 22 23 121 123 13 21 22 23
Nondeterministic TM \equiv deterministic TM

- What if 12 is a failed branch?
 - 12 13 21 22 23 12 131 132 21 22 23
- 12 fails, continue 131, no need to remove 12
Corollary 3.19 I

- **Definition**: NTM is a decider if all branches halt on all inputs.
- **Language decidable** \iff some NTM decides it.
- \Rightarrow easy, one TM decides it and TM is an NTM.
 This TM halts on all inputs (one branch).
- \Leftarrow:
 Now NTM terminates on all branches.
 We will construct a TM to accept the language.
 - each branch is finite
 - every input halts \exists a finite max length.
Corollary 3.19 II

- \# branches finite at each node
- The tree to process this input is finite
- Write it in the 3rd tape
- We know a multi-tape TM is equivalent to a single-tape TM