The current configuration means current state, tape contents, head location

\(uqv \):
- \(q \): current state
- \(uv \): current tape content
- \(u \): left, \(v \): right

head: first of \(v \)
Example of configuration I

- $a, b, c \in \Gamma$, $u, v, \in \Gamma^*$ (i.e., strings from Γ)
 - q_i, q_j: states
- If $\delta(q_i, b) = (q_j, c, L)$
 - uaq_ibv yields uq_jacv
- If $\delta(q_i, b) = (q_j, c, R)$
 - uaq_ibv yields $uacq_jv$
More about Configurations I

- start configuration: q_0w
- accepting configuration: q_{accept}
- rejecting configuration: q_{reject}
- A TM accepts w if configurations $c_1 \cdots c_k$
 1. c_1: start configuration
 2. c_i yields c_{i+1}
 3. c_k accepting configuration
- Language: $L(M)$: strings accepted by M
A language is Turing-recognizable if it is recognized by a TM.

For a Turing machine, there are three possible outcomes:

- accept
- reject
- loop

If an input fails, reject or loop: difficult to decide.

We prefer a TM that never loops:
Deciders: only accept or reject.
A language is Turing-decidable if some TM decides it.

In Chapter 4 we will discuss decidable languages.
Example 3.9

Consider the following language

\[\{ w \# w \mid w \in \{0, 1\}^* \} \]

- Fig 3.10
Example 3.9 II

\[\begin{align*}
q_1 & \xrightarrow{0} x, R \\
q_2 & \xrightarrow{x} R \\
q_4 & \xrightarrow{x} R \\
q_7 & \xrightarrow{x} R \\
q_8 & \xrightarrow{x} R \\
q_9 & \xrightarrow{x} R \\
q_6 & \xrightarrow{0, 1, x} L \\
q_5 & \xrightarrow{x} R \\
q_3 & \xrightarrow{x} R \\
0, 1 & \rightarrow R \\
\end{align*} \]
Example 3.9 III

- Links to q_r not shown
- Simulate 01#01

$q_101#$01 $xq_21#$01 $x1q_2#$01 $x1#$q_401$
$x1q_6#$x1 $xq_71#$x1 $q_7x1#$x1 $xq_11#$x1$
$xxq_3#$x1 $xx#$q_5x1 $xx#$xq_51 $xx#$q_6xx$
$xxq_6#$xx $xq_7x#$xx $xxq_1#$xx $xx#$q_8xx$
$xx#$xxq_8$$q_a$ $xx#$xx q_a

Example 3.11 1

\[C = \{ a^i b^j c^k \mid i \times j = k, i, j, k \geq 1 \} \]

Procedure

1. check if the input is \(a^+ b^+ c^+ \)
2. back to start
3. fix \(a \), for each \(b \), cancel \(c \)
4. store \(b \) back, cancel one \(a \), goto step 3

Too complicated to draw state diagram

But one may wonder if TM can really do the above procedure

Here are more details
Example 3.11 II

- Step 1 can be done by a DFA (as DFA is a special case of TM)
- Step 2 can be done by using a special symbol in the beginning
- Step 3 is similar to the procedure of handling $w\#w$

Now we see the concept of subroutines
Example 3.12

- \(E = \{\#x_1\#x_2 \cdots \#x_l \mid x_i \in \{0, 1\}^*, x_i \neq x_j\} \)

 Idea: sequentially compare every pair

 \[x_1x_2, x_1x_3, \ldots, x_1x_l, x_2x_3, \ldots, x_2x_l, x_{l-1}x_l \]

 Very rough \(\Rightarrow \) more details

 For \(x_i, x_j \) mark \(\# \)'s of both strings by \(\dot{\#} \)

 \(\dot{\#}x_1\dot{\#}x_2\dot{\#}x_3: x_1 \) and \(x_3 \) being compared
Example 3.12 II

- Compare x_i and x_j:
 - Can use a TM similar to that for $w \neq w$
 - We can copy x_1, x_2 to the end and do the comparison there