We would like to study problems that can and cannot be solved by computers. We need a more powerful model:

- Finite automata: small memory (states)
- PDA: unlimited memory (stack) by push/pop
- Turing machine: unlimited and unrestricted memory
- This is about everything a real computer can do
- Thus problems not solved by Turing machines ⇒ beyond the limit of computation
A TM has a tape as the memory

- Differences from finite automata
 - write/read tape
 - head moves left/right
 - infinite space in the tape
 - rejecting/accepting take immediate effect
 - machine goes on forever, otherwise
Turing Machines: III

- Example

\[B = \{ w \# w \mid w \in \{0, 1\}^* \} \]

- This language is known to be not a CFL (example 2.22; details not discussed)

- Running a sample input. Figure 3.2

- ⊥: blank symbol

 We assume infinite ⊥’s after the input sequence

- Strategy: zig-zag to the corresponding places on the two sides of the # and determine whether they match.
Turing Machines: IV

Algorithm:

1. scan to check #
2. check w and w
Formal definition of TM I

- It’s complicated and seldom used
- \(\delta: \)
- \[Q \times \Gamma \to Q \times \Gamma \times \{L, R\} \]
- Example:
 \[\delta(q, a) = (r, b, L) \]
- \(q \): current state
- \(a \): pointed in tape
- \(r \): next state
- \(b \): replace \(a \) with \(b \)
- \(L \): head then moved to the left
Formal definition of TM II

- \((Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})\)
 - \(Q\): states
 - \(\Sigma\): input alphabet (blank: \(\sqcup \notin \Sigma\))
 - \(\Gamma\): tape alphabet, \(\sqcup \in \Gamma, \Sigma \subset \Gamma\)
 - \(\delta:\)

 \[Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\}\]

 \(q_0 \in Q\), start
 - \(q_{\text{accept}} \in Q\)
 - \(q_{\text{reject}} \in Q\), \(q_{\text{reject}} \neq q_{\text{accept}}\)
 - Single \(q_{\text{accept}}, q_{\text{reject}}\)
Formal definition of TM III

- The input

 \[w_1 \ldots w_n \]

 is put in positions 1\ldots,n of the tape in the beginning

 Assume ⊦ in all the rest of the tape

- If head points to first position and

 \[\delta(q,?) = (r,?,L) \]

 then the head stays at the same position
Formal definition of TM IV

CPU

0 | 1 | 1 | 0 ···
tape