Part II: computability

We would like to study problems that can and cannot be solved by computers.

We need a more powerful model:
- Finite automata: small memory (states)
- PDA: unlimited memory (stack) by push/pop
- Turing machine: unlimited and unrestricted memory

This is about everything a real computer can do.

Thus problems not solved by Turing machine
⇒ beyond the limit of computation
A TM has a tape as the memory

Differences from finite automata
- write/read tape
- head moves left/right
- infinite space in the tape
- rejecting/accepting take immediate effect
- machine goes on forever, otherwise
Turing Machines: III

Example

\[B = \{ w \# w \mid w \in \{0, 1\}^* \} \]

This language is known to be not a CFL (example 2.22; details not discussed)

Running a sample input. Figure 3.2

\[\square: \text{blank symbol} \]

We assume infinite \[\square \]'s after the input sequence

Strategy: zig-zag to the corresponding places on the two sides of the \[\# \] and determine whether they match.
Algorithm:
1. scan to check \#
2. check w and w
Formal definition of TM I

- It’s complicated and seldom used
- δ:
 \[Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\} \]
- Example:
 \[\delta(q, a) = (r, b, L) \]

- \(q \): current state
- \(a \): pointed in tape
- \(r \): next state
- \(b \): replace \(a \) with \(b \)
- \(L \): head then moved to the left
Formal definition of TM II

\[(Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}}) \]

- \(Q\): states
- \(\Sigma\): input alphabet (blank: \(\square \notin \Sigma\))
- \(\Gamma\): tape alphabet, \(\square \in \Gamma, \Sigma \subset \Gamma\)
- \(\delta:\)
 \[Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\} \]
- \(q_0 \in Q\), start
- \(q_{\text{accept}} \in Q\)
- \(q_{\text{reject}} \in Q, q_{\text{reject}} \neq q_{\text{accept}}\)
- Single \(q_{\text{accept}}, q_{\text{reject}}\)
Formal definition of TM III

- The input $w_1 \cdots w_n$ is put in positions 1, ..., n of the tape in the beginning.
- Assume \square in all the rest of the tape.
- If head points to first position and $\delta(q,?) = (r,?,L)$, then the head stays at the same position.
Formal definition of TM IV