Part II: computability

We would like to study problems that can and cannot be solved by computers

We need more powerful model

Finite automata: small memory (states)
PDA: unlimited memory (stack) by push/pop

Turing machine: unlimited and unrestricted memory

This is about everything a real computer can do

Thus problems not solved by Turing machine

⇒ beyond the limit of computation
Turing Machines: II

- A TM has a tape as the memory

- Differences from finite automata
 - write/read tape
 - head moves left/right
 - infinite space in the tape
 - rejecting/accepting take immediate effect
 - machine goes on forever, otherwise
Example

\[B = \{ w \# w \mid w \in \{0, 1\}^* \} \]

This language is known to be not a CFL (example 2.22; details not discussed)

Running a sample input. Figure 3.2

\(\square \): blank symbol

We assume infinite \(\square \)'s after the input sequence

Strategy: zig-zag to the corresponding places on the two sides of the \(\# \) and determine whether they match.
Algorithm:

1. scan to check \#$\$
2. check w and \overline{w}
Formal definition of TM I

- It’s complicated and seldom used
- \(\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\}\)

Example:
\[
\delta(q, a) = (r, b, L)
\]

- \(q\): current state
- \(a\): pointed in tape
- \(r\): next state
- \(b\): replace \(a\) with \(b\)

\((Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})\)
Formal definition of TM II

\(Q \): states
\(\Sigma \): input alphabet (blank: \(\square \notin \Sigma \))
\(\Gamma \): tape alphabet, \(\square \in \Gamma, \Sigma \subset \Gamma \)
\(\delta \):
\[
Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\}
\]
\(q_0 \in Q \), start
\(q_{accept} \in Q \)
\(q_{reject} \in Q, q_{reject} \neq q_{accept} \)
Single \(q_{accept}, q_{reject} \)
The input

\[w_1 \cdots w_n \]

is put in positions 1\ldots, \, n of the tape in the beginning.

Assume \(\square \) in all the rest of the tape.
Example 3.7 I

Consider the following language

\[\{ 0^{2^n} \mid n \geq 0 \} \]

Strings in this language are

0, 00, 0000, 00000000, \ldots

Idea: crossing off every other 0 and the remaining string should still have even length
Example 3.7 II

Example:

0000
00
0

Procedure

1. left → right, mark every other 0
2. if in step 1, only one 0 left, then accept
3. if in step 1, odd ≠ 0 left, then reject
4. move head to the beginning
Example 3.7 III

- Go back to stage 1
- Formally definition
 \[Q = \{ q_1, q_2, q_3, q_4, q_5, q_{\text{accept}}, q_{\text{reject}} \} \]
 \[\Sigma = \{ 0 \} \]
 \[\Gamma = \{ 0, x, \square \} \]
- The diagram
Example 3.7 IV
Example 3.7 V

- \(0 \rightarrow R \equiv 0 \rightarrow 0, R \)
- Consider the input 0000

\[
\begin{align*}
q_1 & 0000 & \sqcup q_2 & 000 & \sqcup x q_3 & 00 & \sqcup x 0 q_4 & 0 & \sqcup x 0 x q_3 \\
\sqcup x 0 q_5 & x & \sqcup x q_5 & 0 x & \sqcup q_5 & x 0 x & q_5 & \sqcup x 0 x & q_5 \\
\sqcup x q_2 & 0 x & \sqcup x x q_3 & x & \sqcup x x x q_3 & \sqcup x x q_5 x & \sqcup x x q_5 x & \sqcup x q_5 x & \sqcup x q_5 x \\
\sqcup q_5 & x x x & q_5 & \sqcup x q_5 & x x x & q_5 & \sqcup x q_5 & x x x & q_5 \\
\sqcup x x x q_2 & \sqcup x x x & \sqcup x q_a & \sqcup x x q_2 & x & \sqcup x x q_2 & x & \sqcup x x q_2 & x
\end{align*}
\]

- The \(\delta \) function:

Example 3.7 VI

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>x</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>q_1</td>
<td>q_2, \square, R</td>
<td>q_{reject}, x, R</td>
<td>q_{reject}, \square, R</td>
</tr>
<tr>
<td>q_2</td>
<td>q_3, x, R</td>
<td>q_2, x, R</td>
<td>q_{accept}, \square, R</td>
</tr>
</tbody>
</table>

- No need to have rows for q_{accept}, q_{reject}
 - \Rightarrow accepting/rejecting takes immediate effect
- Now a deterministic TM
- We can have nondeterministic TM later
 - They are equivalent
- Main idea of δ:
 - q_1 : mark the start by \square
 - first element must be 0, otherwise, reject
Example 3.7 VII

- Using ⊓, so the start is known
- $q_2 \rightarrow q_3$: handle initial 00
- $q_3 \rightarrow q_4$: sequentially 00 $\rightarrow 0x$
 - key of this algorithm
 - If not pairs (e.g. 0x0x0x), fails
 - The place where # is even checked
- $q_3 \rightarrow q_5 \rightarrow q_2$ back to beginning
- First 0 (or ⊓) is considered the single final 0

$q_2 \rightarrow \cdots \rightarrow q_2 \rightarrow \cdots \rightarrow q_{accept}$

check if single 0