Nondeterministic TM I

\[\delta : Q \times \Gamma \rightarrow P(Q \times \Gamma \times \{L, R\}) \]

\(P\): power set

Note that following the textbook, we allow only \(\{L, R\}\) instead of \(\{L, S, R\}\)

Example:

\[q_0, a \rightarrow q_1, b, R \]
\[\rightarrow q_2, c, L \]
What if

\[q_0, a \rightarrow q_{\text{accept}} \]
\[\rightarrow q_{\text{reject}} \]

For NTM, by definition \(w \) is accepted if one branch works.

In this sense, unless all branches are finite

\(\text{NTM} \rightarrow \text{accept or endless loop} \)

Thus NTM is like an “acceptor”
Example of NTM 1

- $A = \{ w \mid w \text{ contains } aab \}$
- State diagram
Example of NTM II

\[a, b \rightarrow a, b, R \]

- \(q_0 \)
- \(q_1 \)
- \(q_2 \)
- \(q_r \)
- \(q_a \)

Transitions:
- \(a \rightarrow R \) from \(q_0 \) to \(q_1 \)
- \(b \rightarrow R \) from \(q_1 \) to \(q_2 \)
- \(a \rightarrow R \) from \(q_2 \) to \(q_a \)
- \(a \rightarrow R \) from \(q_r \) to \(q_1 \)
- \(b \rightarrow R \) from \(q_r \) to \(q_2 \)
- \(a \rightarrow R \) from \(q_r \) to \(q_a \)
- \(\square \rightarrow R \) from \(q_0 \) to \(q_r \)
- \(\square \rightarrow R \) from \(q_1 \) to \(q_r \)
- \(\square \rightarrow R \) from \(q_2 \) to \(q_r \)
- \(\square \rightarrow R \) from \(q_a \) to \(q_r \)
Example of NTM III

- You may recall that this is an NFA example discussed before
- Only the first node is nondeterministic
Example of NTM I

- \(L = \{0^n \mid n \text{ composite number}\} \)
- From p. 204 of Lewis and Papadimitriou
- Composite number: product of two natural numbers
- Procedure
 - Nondeterministically choose \(p \) and \(q \)
 - Sequentially try \(p \) from 2 to \(n - 1 \)
 - Check if \(n = pq \)
 - This can be done by the earlier example

\[\{a^n b^p c^q \mid n = p \times q\} \]
Question: details about “non-deterministically” choose p and q?

If we sequentially try all (p, q) combinations, then looks like we have a deterministic setting?

Our generation of p and q can be non-deterministic

Say we do a copy operation to generate p elements. The TM can stop this operation at any time point