Lemma 2.27
Language recognized by PDA \Rightarrow context free
Idea:

any states p, q of a PDA P
\Rightarrow we have a variable A_{pq}

and

A_{pq} generates x \iff
P from p with empty stack to q with empty stack
Need to modify P so that

1. Single accept: q_{accept}
 Then $A_{q_{\text{start}}q_{\text{accept}}}$ is the start variable to generate any string x of this language

2. Stack should be empty before accepting
 In the beginning stack is empty and we need this property to have (1)

3. Each transition push or pop, but not both

We will explain how to make the PDA satisfy these conditions
Now we focus on the more important part: construction of the rules.

For (1) we don’t really mean “empty stack.” We actually mean “stack with the same contents.”

For the following figure, rules

$$A_{pq} \rightarrow A_{pr}A_{rq}, \forall p, q, r \in Q$$

should be generated.

- x-axis: input string
- y-axis: stack height
Reason: If we can go from p to r without changing stack and from r to q without changing stack.
then we can do from p to q without changing stack.

In the following figure we have:

$p, q, r, s \in Q, t \in \Gamma, a, b \in \Sigma_{\epsilon}$

If

$(r, t) \in \delta(p, a, \epsilon), (q, \epsilon) \in \delta(s, b, t)$

then we should have

$A_{pq} \rightarrow aA_{rs}b$
Finally we need

\[A_{pp} \rightarrow \epsilon, \forall p \in Q \]

Let’s discuss an example first
\{0^n1^n \mid n \geq 1\}

This is modified from an earlier example. Now q_1 is not an accept state.
Examples II

- Three conditions satisfied
 Each transition push or pop only
- \(t = \$ \)

\[
\begin{array}{cccccccc}
p & r & s & q & t & a & b \\
1 & 2 & 3 & 4 & \$ & \epsilon & \epsilon \\
\end{array}
\]

rule:

\[
A_{14} \rightarrow \epsilon A_{23} \epsilon
\]

- \(t = 0 \)

\[
\begin{array}{cccccccc}
p & r & s & q & t & a & b \\
2 & 2 & 2 & 3 & 0 & 0 & 1 \\
2 & 2 & 3 & 3 & 0 & 0 & 1 \\
\end{array}
\]
Examples III

rules:

\[A_{23} \rightarrow 0A_{22}1 \]
\[A_{23} \rightarrow 0A_{23}1 \]

- Other rules: 64 rules

\[A_{11} \rightarrow A_{11}A_{11} \]
\[A_{11} \rightarrow A_{12}A_{21} \]
\[A_{11} \rightarrow A_{13}A_{31} \]
\[A_{11} \rightarrow A_{14}A_{41} \]
\[\vdots \]
Examples IV

and

\[A_{11} \rightarrow \epsilon \]
\[A_{22} \rightarrow \epsilon \]
\[A_{33} \rightarrow \epsilon \]
\[A_{44} \rightarrow \epsilon \]