Example 2.4 1

The following CFG handles mathematical expressions

\[G_4 = (V, \Sigma, R, \langle \text{expr} \rangle) \]
\[V = \{ \langle \text{expr} \rangle, \langle \text{term} \rangle, \langle \text{factor} \rangle \} \]
\[\Sigma = \{ a, +, \times, (,) \} \]
\[R: \]

\[\langle \text{expr} \rangle \rightarrow \langle \text{expr} \rangle + \langle \text{term} \rangle \mid \langle \text{term} \rangle \]
\[\langle \text{term} \rangle \rightarrow \langle \text{term} \rangle \times \langle \text{factor} \rangle \mid \langle \text{factor} \rangle \]
\[\langle \text{factor} \rangle \rightarrow (\langle \text{expr} \rangle) \mid a \]

Fig 2.5: check \(a + a \times a \)
Example 2.4 II

\[
\text{check } (a + a) \times a
\]
Example 2.4 III

\[(E \times a) + (E \times a)\]
Design Grammars I

\[\{0^n1^n \mid n \geq 0\} \cup \{1^n0^n \mid n \geq 0\} \]

\[S_1 \rightarrow 0S_11 \mid \epsilon \]
\[S_2 \rightarrow 1S_20 \mid \epsilon \]
\[S \rightarrow S_1 \mid S_2 \]

CFG versus DFA

For a CFG that is regular, it can be recognized by DFA
Rules of CFG can be

\[R_i \rightarrow aR_j \text{ if } \delta(q_i, a) = q_j \]
\[R_i \rightarrow \epsilon \text{ if } q_i \in F \]

- We see the main difference between CFG and DFA
 - CFG: a rule can be like

\[R_i \rightarrow aR_jb \]
DFA: a rule can only be

\[R_i \rightarrow aR_j, \]

where we treat each \(R_i \) as a state and let

\[\delta(R_i, a) = R_j \]
Ambiguity I

- The same string but obtained in different ways
- For the example of mathematical expressions discussed earlier, what if we consider the following rules?

\[
\langle \text{expr} \rangle \rightarrow \langle \text{expr} \rangle + \langle \text{expr} \rangle \mid \\
\langle \text{expr} \rangle \times \langle \text{expr} \rangle \mid (\langle \text{expr} \rangle) \mid a
\]

- We see the following ways to parse

\[a + a \times a\]
This CFG does not give the precedence relation

We want that $a \times a$ is done first
By the more complicated CFG earlier, the parsing is unambiguous.

Question: how to formally define the ambiguity?

We need to define “leftmost derivation” first.
Leftmost derivation

- Even for an unambiguous CFG we may have the same parse tree, but different derivations.
- For the CFG discussed earlier we can do
 \[
 \langle \text{expr} \rangle \Rightarrow \langle \text{expr} \rangle + \langle \text{term} \rangle
 \]
 \[
 \Rightarrow \langle \text{expr} \rangle + \langle \text{term} \rangle \times \langle \text{factor} \rangle
 \]
 where the second part is expanded.
- On the other hand, we can handle the first one first.
 \[
 \langle \text{expr} \rangle \Rightarrow \langle \text{expr} \rangle + \langle \text{term} \rangle
 \]
 \[
 \Rightarrow \langle \text{term} \rangle + \langle \text{term} \rangle
 \]
This is not considered ambiguous

Definition of leftmost derivation: at every step the leftmost remaining variable is the one replaced.
Formal definition of ambiguity I

- w ambiguous if there exist two leftmost derivations.
- Some context-free languages can be generated by ambiguous & unambiguous grammars.
- We say a CFG is inherently ambiguous if it only has ambiguous grammars.
- See prob 2.29 in the textbook. Details not given here.