That is, if given an NFA, how can we convert it to a regular expression?

Example:

Quickly we see that this corresponds to

$$a^* b(a \cup b)$$
Example 1.68
Consider the following DFA
It is not that easy to directly see what the regular expression is

We need a procedure shown below

First, add a start and an accept states
This generates a generalized NFA.

Our procedure is:

\[\text{DFA} \rightarrow \text{GNFA} \rightarrow \text{regular expression} \]

Remove state 1.
Regular ⇒ a regular expression V

Example: the link $3 \rightarrow 2$
Thus $ba \cup a$

Remove state 2
Example:

\[s \rightarrow 3 \]
Thus $a(aa \cup b)^* ab \cup b$
Regular \Rightarrow a regular expression IX

- Here we need to handle

$$2 \xrightarrow{aa \cup b} 2$$

- Remove state 3

$$(a(aa \cup b)^*ab \cup b)((ba \cup a)(aa \cup b)^*ab \cup bb)^*$$

$$(ba \cup a)(aa \cup b)^* \cup \epsilon \cup a(aa \cup b)^*$$

- We will formally explain the procedure
Definition of GNFA I

- Between any two states: a regular expression
- \((Q, \Sigma, \delta, q_{\text{start}}, q_{\text{accept}})\)

\[\delta : (Q - \{q_{\text{accept}}\}) \times (Q - \{q_{\text{start}}\}) \rightarrow R\]

- \(R\): all regular expressions over \(\Sigma\)
- DFA \(\rightarrow\) GNFA
 - Two new states: \(q_{\text{start}}, q_{\text{accept}}\)
 - \(q_{\text{start}} \rightarrow q_0\) with \(\epsilon\)
 - any \(q \in F \rightarrow q_{\text{accept}}\) with \(\epsilon\)
In the definition, between any two states there is an expression.

But what if in the graph two states are not connected?

\(\emptyset \in R \) so if no connection, we simply consider \(\emptyset \) as the expression between two states.
GNFA \rightarrow regular expression I

- Fig 1.63

![Diagram]

- q_i
- q_j
- q_{rip}
- R_1
- R_2
- R_3
- R_4
GNFA \rightarrow regular expression II

$q_i (R_1)(R_2)^* (R_3) \cup (R_4) \rightarrow q_j$

- q_{rip} is the state being removed
- In the procedure
 - 3-state DFA \rightarrow 5-state GNFA \rightarrow 4-state $\cdots \rightarrow$
 - 2-state GNFA \rightarrow regular expression
- In the procedure any any (i, j) related to q_{rip} considered
- Algorithm: convert(G)
 - k: # of G
If $k = 2$

return R

If $k > 2$, choose any $q_{\text{rip}} \in Q \setminus \{q_s, q_a\}$ for removal

$$Q' = Q \setminus \{q_{\text{rip}}\}$$

$$\forall q_i \in Q' \setminus \{q_{\text{accept}}\}, q_j \in Q' \setminus \{q_{\text{start}}\}$$

$$\delta'(q_i, q_j) = R_1 R_2^* R_3 \cup R_4,$$

where

$$R_1 = \delta(q_i, q_{\text{rip}}), \quad R_2 = \delta(q_{\text{rip}}, q_{\text{rip}}), \quad R_3 = \delta(q_{\text{rip}}, q_j), \quad R_4 = \delta(q_i, q_j)$$
Run convert(G'), where

$$G' = (Q', \Sigma, \delta', q_s, q_a)$$

Why in the textbook we modify DFA to GNFA?
Is it ok to use NFA?
Seems ok??