Let’s apply pumping lemma to prove that

\[B = \{0^n1^n \mid n \geq 0\} \]

is not regular

Assume \(B \) is regular. From the lemma there is \(p \) such that \(\forall s \) in the language with \(|s| \geq p \) some properties hold
Example 1.73 II

Now consider a particular s in the language

$$s = 0^p1^p$$

We see that $|s| \geq p$. By the lemma, s can be split to

$$s = xyz$$

such that

$$xy^i z \in B, \forall i \geq 0, \quad |y| > 0, \quad \text{and } |xy| \leq p$$

However, we will show that this is not possible
Example 1.73 III

1. If

\[y = 0 \cdots 0 \]

then

\[xy = 0 \cdots 0 \text{ and } z = 0 \cdots 01 \cdots 1 \]

Thus

\[xyyz : \#0 > \#1 \]

Then \(xy^2z \notin B \), a contradiction
Example 1.73 IV

2. If

\[y = 1 \cdots 1, \]

similarly

\[xy^2z \notin B \text{ as } \#0 < \#1 \]

3. If

\[y = 0 \cdots 01 \cdots 1 \]

then

\[xyyz \notin B \text{ as it is not in the form of } 0^?1^? \]
Example 1.73 V

• Therefore, we fail to find \(xyz \) with \(|y| > 0 \) such that

\[
xy^i z \in B, \forall i \geq 0
\]

Thus we get a contradiction.

• We see that the condition

\[
|xy| \leq p
\]

is not used, but we already reach the contradiction.

• For subsequent examples we will see that this condition is used.
Example 1.39 I

- $C = \{ w \mid \#0 = \#1 \}$

- We follow the previous example to have

$$s = 0^p1^p = xyz$$

- However, we cannot get the needed contradiction for the case of

$$y = 0 \cdots 01 \cdots 1$$
Example 1.39 II

- Earlier we said

 \[\text{x y y z not in the form of } 0^? 1^? \]

 but now we only require

 \[\#0 = \#1 \]

- It is possible that

 \[x = \epsilon, z = \epsilon, y = 0^p 1^p \]

 and then

 \[|y| > 0 \text{ and } xy^i z \in C, \forall i \]
Example 1.39 III

- The 3rd condition should be applied

$$|xy| \leq p \Rightarrow y = 0 \cdots 0 \text{ in } s = 0^p1^p$$

Then

$$xyyz \notin C$$

- Question: the pumping lemma says

$$\forall s \in A, \cdots$$

but why in the examples we analyzed a particular s?
And it seems that the selection of s is important. Why?

We will explain our use of the lemma in more detail.