Nonregular language I

We are interested in the limit of finite automata

- Some languages cannot be recognized

\[\{0^n1^n \mid n \geq 0\} \]

- We might remember \#0 first
 - But \# of possible \(n\)’s is \(\infty\)
- Thus we cannot recognize it by finite automata
- However, this is not a formal proof
- It may be difficult to quickly tell if a language is regular or not
Consider two languages

\[C = \{ w \mid \#0 = \#1 \} \]
\[D = \{ w \mid \#01 = \#10 \} \]

It seems that both are not regular

Indeed, \(C \) is not regular but \(D \) is

This is an exercise in the book, so we don’t give details

To formally prove a language is not regular, we will introduce the pumping lemma
Strategy: by contradiction

We prove

regular \implies \text{some properties}

If “some properties” cannot hold, then the language is not regular
Theorem 1.70 I

If A regular $\Rightarrow \exists p$ (pumping length) such that $\forall s \in A, |s| \geq p$, $\exists x, y, z$ such that $s = xyz$ and

1. $\forall i \geq 0, xy^i z \in A$
2. $|y| > 0$
3. $|xy| \leq p$

Note that for y^i, we have $y^0 = \epsilon$
Because A is regular, \exists a DFA to recognize A
Let $p = \#$ states of this DFA
If no string s such that $|s| \geq p$, then the theorem statement is satisfied
Now consider any s with $|s| \geq p$

$$s = s_1 \cdots s_n$$
To process this string, assume the state sequence is

\[q_1 \cdots q_{n+1} \]

Because \(|s| \geq p\), we have

\[n + 1 > p \]

In \(1 \ldots p + 1\) two states must be the same (pigeonhole principle)

Fig 1.72
Proof of pumping lemma III
Proof of pumping lemma IV

Assume

q_j and q_l with $j \leq p + 1, l \leq p + 1$

are two same states. Then let

\[x = s_1 \cdots s_{j-1}, \quad y = s_j, \cdots s_{l-1}, \quad z = s_l \cdots s_n \]

We then have

\[\forall i \geq 0, \; xy^i z \in A \]
Because $j \neq l$,

\[|y| > 0 \]

From $l \leq p + 1$, we have

\[|xy| \leq p \]

Thus all conditions are satisfied