We are interested in the limit of finite automata

- Some languages not recognized

\[\{0^n1^n \mid n \geq 0\} \]

- We might remember #0 first
 - But # of possible \(n \)'s is \(\infty \)
- Thus we cannot recognize it by finite automata
- However, this is not a formal proof
- It may be difficult to quickly tell if a language is regular or not
Consider two languages

\[C = \{ w \mid \#0 = \#1 \} \]
\[D = \{ w \mid \#01 = \#10 \} \]

It seems that both are not regular

Indeed, \(C \) is not regular but \(D \) is

This is an exercise in the book, so we don’t give details

To formally prove a language is not regular, we will introduce the pumping lemma
Pumping lemma I

- Strategy: by contradiction
- We prove
 \[\text{regular} \Rightarrow \text{some properties} \]
- If “some properties” cannot hold, then the language is not regular
Theorem 1.70 I

If A regular $\Rightarrow \exists p$ (pumping length) such that $\forall s \in A, |s| \geq p$, $\exists x, y, z$ such that $s = xyz$ and

1. $\forall i \geq 0, xy^i z \in A$
2. $|y| > 0$
3. $|xy| \leq p$

Note that for y^i, we have $y^0 = \epsilon$
Proof of pumping lemma I

Because A is regular, \exists a DFA to recognize A
Let $p = \#$ states of this DFA
If no string s such that $|s| \geq p$, then the theorem statement is satisfied
Now consider any s with $|s| \geq p$

$$s = s_1 \cdots s_n$$
Proof of pumping lemma II

- To process this string, assume the state sequence is

 \[q_1 \cdots q_{n+1} \]

 Because \(|s| \geq p\), we have

 \[n + 1 > p \]

- In \(1 \ldots p + 1\) two states must be the same
 (pigeonhole principle)

Fig 1.72
Proof of pumping lemma III
Proof of pumping lemma IV

Assume

\[q_j \text{ and } q_l \text{ with } j \leq p + 1, \ l \leq p + 1 \]

are two same states. Then

\[x = s_1 \cdots s_{j-1}, \ y = s_j, \cdots s_{l-1}, \ z = s_l \cdots s_n \]

Because \(j \neq l \),

\[|y| > 0 \]

From \(l \leq p + 1 \), we have

\[|xy| \leq p \]

Thus all conditions are satisfied
Let’s apply pumping lemma to prove that

\[B = \{0^n1^n \mid n \geq 0\} \]

is not regular

Assume \(B \) is regular. From the lemma there is \(p \) such that

\[s = 0^p1^p = xyz \]

By the lemma, \(|y| > 0 \) and \(xy^iz \in B, \forall i \geq 0 \)
Example 1.73 II

1. If

\[y = 0 \cdots 0 \]

then

\[xy = 0 \cdots 0 \quad \text{and} \quad z = 0 \cdots 01 \cdots 1 \]

Thus

\[xyyz : \#0 > \#1 \]

2. Then \(xy^2 z \notin B \), a contradiction
Example 1.73 III

3. If

\[y = 1 \cdots 1, \]

similarly

\[xy^2z \notin B \text{ as } \#0 < \#1 \]

4. If

\[y = 0 \cdots 01 \cdots 1 \]

then

\[xyyz \notin B \text{ as it is not in the form of } 0^?1^? \]
We see that the condition

$$|xy| \leq p$$

is not used.