Closure under regular operations

Recall we define three operations: \cup, \circ, \ast

We will see that by using NFA, the proof is easier
Given two regular languages A_1, A_2 under the same \sum.

Is $A_1 \cup A_2$ regular?

To prove that a language is regular, by definition, it should be accepted by one DFA (or an NFA).

We will construct an NFA for $A_1 \cup A_2$.

Assume A_1 and A_2 are recognized by two NFAs N_1 and N_2, respectively.
Formal definition
Two NFAs:

\[N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1) \]
\[N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2) \]

Note for NFA, \(\epsilon \notin \Sigma \)
New NFA

\[Q = Q_1 \cup Q_2 \cup \{ q_0 \} \]

\[q = q_0 \]

\[F = F_1 \cup F_2 \]

\[\delta(q, a) = \begin{cases}
\delta_1(q, a) & q \in Q_1 \\
\delta_2(q, a) & q \in Q_2 \\
\{ q_1, q_2 \} & q = q_0 \text{ and } a = \epsilon \\
\emptyset & q = q_0 \text{ and } a \neq \epsilon
\end{cases} \]
The last case of δ is easily neglected
Closed Under Concatenation I

Given two NFAs

N_1 N_2

- Idea: from any accept state of N_1, add an ϵ link to q_2 (start state of N_2)
- The new machine:
Formal definition. Given two automata

\[(Q_1, \Sigma, \delta_1, q_1, F_1)\]

\[(Q_2, \Sigma, \delta_2, q_2, F_2)\]
Closed Under Concatenation III

- New machine

\[Q = Q_1 \cup Q_2 \]

\[q_0 = q_1 \]

\[F = F_2 \]

\(\delta \) function:

\[\delta(q, a) = \begin{cases}
\delta_1(q, a) & q \in Q_1 \setminus F_1 \\
\delta_2(q, a) & q \in Q_2 \\
\delta_1(q, \epsilon) \cup \{q_2\} & q \in F_1, a = \epsilon \\
\delta_1(q, a) & q \in F_1, a \neq \epsilon
\end{cases} \]
Closed under star I

- Given the following machine

- Recall the star operation is defined as follows

\[A^* = \{ x_1 \cdots x_k \mid k \geq 0, x_i \in A \} \]

- How about the following diagram
The problem is that ϵ may not be accepted.

How about making the start state an accepting one?
Closed under star III

- This may make the machine to accept strings not in A
- A correct setting

Formal definition

Given the machine $(Q_1, \Sigma, \delta_1, q_1, F_1)$
Closed under star IV

- New machine:

\[Q = Q_1 \cup \{ q_0 \} \]
\[q_0 : \text{new start state} \]
\[F = F_1 \cup \{ q_0 \} \]

\[\delta(q, a) = \begin{cases}
\delta_1(q, a) & q \in Q_1 \setminus F_1 \\
\delta_1(q, a) \cup \{ q_1 \} & q \in F_1, a = \epsilon \\
\delta_1(q, a) & q \in F_1, a \neq \epsilon \\
\{ q_1 \} & q = q_0, a = \epsilon \\
\emptyset & q = q_0, a \neq \epsilon
\end{cases} \]