Recall we define three operations: \(\cup, \circ, \ast \)

We will see that by using NDA, the proof is easier
Given two regular languages A_1, A_2 under the same Σ
Is $A_1 \cup A_2$ regular?
To prove that a language is regular, by definition, it should be accepted by one DFA (or an NFA)
We will construct an NFA for $A_1 \cup A_2$
Assume A_1 and A_2 are recognized by two NFAs N_1 and N_2, respectively
Formal definition
Two NFAs:

\[N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1) \]
\[N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2) \]

Note for NFA, \(\epsilon \notin \Sigma \)
New NFA

\[Q = Q_1 \cup Q_2 \cup \{ q_0 \} \]
\[q = q_0 \]
\[F = F_1 \cup F_2 \]

\[\delta(q, a) = \begin{cases}
\delta_1(q, a) & q \in Q_1 \\
\delta_2(q, a) & q \in Q_2 \\
\{ q_1, q_2 \} & q = q_0 \text{ and } a = \varepsilon \\
\emptyset & q = q_0 \text{ and } a \neq \varepsilon
\end{cases} \]
The last case of δ is easily neglected
Closed Under Concatenation I

Given two NFAs

\[N_1 \]

\[N_2 \]

- Idea: from any accept state of \(N_1 \), add an \(\epsilon \) link to \(q_2 \) (start state of \(N_2 \))
- The new machine:
Formal definition. Given two automata

\[(Q_1, \Sigma, \delta_1, q_1, F_1)\]
\[(Q_2, \Sigma, \delta_2, q_2, F_2)\]
Closed Under Concatenation III

- New machine

\[Q = Q_1 \cup Q_2 \]
\[q_0 = q_1 \]
\[F = F_2 \]

\(\delta \) function:

\[\delta(q, a) = \begin{cases}
\delta_1(q, a) & q \in Q_1 \setminus F_1 \\
\delta_2(q, a) & q \in Q_2 \\
\delta_1(q, \epsilon) \cup \{q_2\} & q \in F_1, a = \epsilon \\
\delta_1(q, a) & q \in F_1, a \neq \epsilon
\end{cases} \]
Given the following machine

Recall the star operation is defined as follows

\[A^* = \{ x_1 \cdots x_k \mid k \geq 0, x_i \in A \} \]

How about the following diagram
The problem is that ϵ may not be accepted.
How about making the start state an accepting one?
Closed under star \(\text{III} \)

- This may make the machine to accept strings not in \(A \)
- A correct setting
Closed under star IV

- Formal definition

\[(Q_1, \Sigma, \delta_1, q_1, F_1)\]

\[Q = Q_1 \cup \{q_0\}\]

\[q_0: \text{new start state}\]

\[F = F_1 \cup \{q_0\}\]

\[\delta:\]

\[\delta(q, a) = \begin{cases}
\delta_1(q, a) & q \in Q_1 \setminus F_1 \\
\delta_1(q, a) \cup \{q_1\} & q \in F_1, a = \epsilon \\
\delta_1(q, a) & q \in F_1, a \neq \epsilon \\
\{q_1\} & q = q_0, a = \epsilon
\end{cases}\]
Closed under star V