DFA \equiv \text{NFA I}

- DFA \Rightarrow \text{NFA}
- Formally, a language recognized by a DFA \rightarrow recognized by an NFA
- The proof is easy because a DFA is an NFA
- However, formally DFA is not an NFA because DFA uses Σ but not Σ_ϵ

 Can easily handle this by adding

 $q_i, \epsilon \rightarrow \emptyset$

- The other direction: NFA \Rightarrow DFA
DFA \equiv NFA II

- Need to convert NFA to an equivalent DFA
 That is, they recognize the same language
- We do the proof by an example
Example 1.41

Consider the following NFA (we discussed this NFA before)

- The resulting DFA diagram
Example 1.41 II
Each state is a subset of \(\{1, 2, 3\} \)

Let’s check details of \(\{1, 2\} \) \(\cup \) \(\{2, 3\} \)

We see

\[
q_1 \xrightarrow{a} \emptyset \\
q_2 \xrightarrow{a} \{q_2, q_3\}
\]

Thus

\[
\emptyset \cup \{2, 3\} = \{2, 3\}
\]
Explanation of the Procedure II

- Start state:
 \[\{1, 3\} \text{ but not } \{1\} \]
 The reason is that in the beginning, even without any input, we can already reach \(q_3 \)

- Accept states: any state including \(q_1 \) is an accept state
Removing unused states I

- Some states can never be reached.
- We can remove them to simplify the diagram.
- Turns out any state **having 1 but without 3** can never be reached.
Removing unused states II
More explanation of example 1.41

- **Idea:**
 Each node includes all states at the current layer

- **Example:** baa

![Diagram of states and transitions for example baa.]
More explanation of example 1.41 II

We see

\[\{1\} \xrightarrow{b} \{2\} \xrightarrow{a} \{2, 3\} \xrightarrow{a} \{1, 2, 3\} \]

- Proof

Given NFA

\[(Q, \Sigma, \delta, q_0, F)\]

We would like to convert it to a DFA

\[(Q', \Sigma, \delta', q'_0, F')\]

Details of this DFA:
More explanation of example 1.41 III

- \(Q' = P(Q) \)
- \(q'_0 \in P(Q) \) includes \(q_0 + \) states reached by \(\epsilon \)

We call such a set \(E(q_0) \)

- \(F' = \{ R \mid R \in Q', R \cap F \neq \emptyset \} \)
- \(\delta' : \)

\[
\delta'(R, a) = \bigcup_{r \in R} E(\delta(r, a))
\]

Note that we cannot just do

\[
\bigcup_{r \in R} \delta(r, a)
\]