Nondeterminism I

- Deterministic algorithm:
 Given current state and current input, next step is known
- Nondeterministic algorithm:
 Several choices are possible
- They will be respectively called
 DFA: deterministic finite automata
 and
 NFA: non-deterministic finite automata
- Fig 1.27
\(\delta \) is not a function any more: \(\delta(q_1, 1) = q_1 \) or \(q_2 \)

\(\epsilon \) between \(q_2 \) and \(q_3 \): \(q_2 \) can move to \(q_3 \) without any input
How to run a string? It can be run by split
A kind of parallel machines
ex: 010110
Fig 1.29
Nondeterminism IV
After processing the string, if one path reaches an accept state, then the string is accepted.

Note that we handle the ϵ edge immediately.

So each layer of the tree is the collection of states that can be reached up to the current input character.
Example 1.30

- Strings with 1 in 3rd position from the end
 00100, 0100 are accepted, but 0010 is not
- Fig 1.31

The only nondeterministic place is at q_1
Example 1.30 II

- At q_1 we nondeterministically guess if we are already at the third position from the end
- DFA and NFA
- They are equivalent. We will formally explain this later
- For this example we can directly design a DFA for this language
- Fig 1.32
Example 1.30 III

\[q_{000} \xrightarrow{0} q_{100} \xrightarrow{0} q_{010} \xrightarrow{0} q_{110} \]

\[q_{001} \xrightarrow{1} q_{101} \xrightarrow{1} q_{011} \xrightarrow{1} q_{111} \]

\[q_{100} \xrightarrow{0} q_{010} \xrightarrow{1} q_{011} \]

\[q_{010} \xrightarrow{0} q_{110} \xrightarrow{0} q_{011} \]

\[q_{110} \xrightarrow{0} q_{011} \]

\[q_{001} \xrightarrow{1} q_{000} \]

\[q_{101} \xrightarrow{1} q_{100} \]

\[q_{011} \xrightarrow{1} q_{111} \]

\[q_{111} \xrightarrow{1} q_{110} \]
Example 1.30 IV

- Idea of this diagram: using 8 states to record the past 3 digits so far
- The idea is simple. But why can we use 000 as the start state?
- Looks like we need other nodes:

 \[
 ___, __0, __1, _01, _10, _00, _11
 \]

- Then we see that the path is the same as if we start from 000
- For example,

 \[
 ___ \overset{0}{\rightarrow} __0 \overset{1}{\rightarrow} _01
 \]
Consider a modification of the NFA in example 1.30

\[q_2 \rightarrow q_3 : 0, 1 \Rightarrow 0, 1, \epsilon \]
\[q_3 \rightarrow q_4 : 0, 1 \Rightarrow 0, 1, \epsilon \]
What is the language: at least one of the last three characters is 1

How about DFA for this language?
Except q_{000}, all others are in F