Mathematical notions I

- Set
 Omitted
- Sequence and tuples
 - Sequence: Objects in order

 $$(7, 21, 57) \neq (57, 7, 21)$$

- Repetition

 set : $\{7, 21, 57\} = \{7, 7, 21, 57\}$
 sequences : $\{7, 21, 57\} \neq \{7, 7, 21, 57\}$
Mathematical notions II

- Tuples: finite sequence
 (7,21,57): 3-tuple
- Cartesian product:

 \[A = \{1, 2\}, \quad B = \{x, y\} \]

 \[A \times B = \{(1, x), (1, y), (2, x), (2, y)\} \]

- Function: single output
- Relation: scissors-paper-stone

<table>
<thead>
<tr>
<th></th>
<th>beats</th>
<th>scissors</th>
<th>paper</th>
<th>stone</th>
</tr>
</thead>
<tbody>
<tr>
<td>scissors</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>paper</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>stone</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td></td>
</tr>
</tbody>
</table>
Equivalence relation

1. reflexive
 \[\forall x, xRx \]

2. symmetric
 \[xRy \iff yRx \]

3. transitive
 \[xRy, yRz \Rightarrow xRz \]

e.g. “=”
Example: \(i \equiv_7 j \) if \(0 = i - j \mod 7 \)

\[
\begin{align*}
i - i & \mod 7 = 0 \\
i - j & = 7a, j - i = -7a \\
i - j & = 7a, j - k = 7b \\
\Rightarrow i - k & = 7(a + b)
\end{align*}
\]

Graph

Undirected

\[
\begin{array}{ccc}
 \circ & \circ & \circ \\
\end{array}
\]

Directed
Mathematical notions V

Nodes (vertices)

- Edges: connection between nodes
- Degree = \# edges at a node

Subgraph: G is subgraph of H if
- G is a graph
- $\text{node}(G) \subset \text{node}(H)$
- $\text{edge}(G) = \text{subset of} \text{edge}(H) \text{ connecting} \text{node}(G)$

In our example,
is a subgraph, but

is not

- Strings and languages
 - alphabet: \{0, 1\}
 - string: 1001
 - language: set of strings

- Boolean logic
 - true and false
Mathematical notions VII

- 0 (false) and 1 (true)
- $0 \land 0 = 0, \ 0 \lor 0 = 0, \ \neg 0 = 1$ (negation operation)
- xor \otimes

 $\begin{align*}
 0 \otimes 0 & = 0 \\
 0 \otimes 1 & = 1 \\
 1 \otimes 0 & = 1 \\
 1 \otimes 1 & = 0
 \end{align*}$

- implication
Mathematical notions VIII

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \rightarrow Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Why

$P = 0, Q = 1$, then $P \rightarrow Q = 1$

Consider

rainy \rightarrow wet land

If not rainy, saying rainy implies wet land is ok.
\[P \rightarrow Q \equiv \neg P \lor Q \]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>(P \rightarrow Q)</th>
<th>(\neg P)</th>
<th>(\neg P \lor Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Proof I

- Direct proof:

 \[A \rightarrow B \]

- Proof by contradiction

 \[\neg B \rightarrow \neg A \]

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>P \rightarrow Q</th>
<th>\neg Q</th>
<th>\neg P</th>
<th>\neg Q \rightarrow \neg P</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Proof II

- Example 1:
 Every graph \Rightarrow sum of degrees is even
 - An example:

 \[
 \begin{array}{c}
 \text{○} - \text{○} - \text{○}
 \end{array}
 \]

 \# degrees = 1 + 2 + 1 = 4
 - Each edge: 2 nodes

 \[
 \text{total \# degrees} = 2 \times \# \text{edges}
 \]
 - Example 2: $\sqrt{2}$ is irrational
Proof III

- The implication

 Definition of rational numbers

 \(\Rightarrow \sqrt{2} \) is not rational

 That is,

 If a rational number is ...

 \(\Rightarrow \sqrt{2} \) is not rational

 The opposite is

 If \(\sqrt{2} \) is rational

 \(\Rightarrow \) The rational number cannot be defined as ...
If $\sqrt{2}$ is rational

$$\sqrt{2} = \frac{m}{n}$$

and m, n have no common factor.

Then

$$2n^2 = m^2$$

Looks impossible. But how to write this formally?

First we prove that m must be even. This is also proof by contradiction.
Proof V

If m is not even,

$$m = 2k + 1.$$

Then

$$m^2 = 4(k^2 + k) + 1$$

is not even and

$$m^2 = 2n^2$$

does not hold.
Now suppose m is even

$$m = 2k$$

Then

$$n^2 = 2k^2$$

By the same argument, n is even

Thus m, n have a common factor 2 and there is a contradiction