Problem 1 (15 pts). Let $\Sigma = \{0\}$. Consider

$$EQ_{DFA} = \{\langle A, B \rangle \mid A \text{ and } B \text{ are DFAs and } L(A) = L(B)\}.$$

Recall that to prove EQ_{DFA} is decidable, we construct DFA C such that

$$L(C) = \left(L(A) \cap \overline{L(B)}\right) \cup \left(\overline{L(A)} \cap L(B)\right),$$

and then run T on C where T decides $EDFA = \{\langle A \rangle \mid A \text{ is a DFA and } L(A) = \emptyset\}$. Now consider

Construct a DFA C with the above A and B, and see if T accepts or rejects $\langle C \rangle$ by running the algorithm in Theorem 4.4 of the textbook. For \cap, use a procedure similar to the one for \cup in Theorem 1.25 of the textbook.

Solution.
Now we test T on C as follows: mark $1\bar{a}1a$; mark $1\bar{b}1b$; no new states can be marked. Because no accept state is marked, accept.

Common mistake: For some unknown reason, some get the following diagram

But remember that we have a DFA!

Problem 2 (30 pts). Let $\Sigma = \{0, 1, \#\}$. In the previous exam we consider the language

$$D = \{w\#w^R \mid w \in \{0, 1\}^*\}.$$

(a) (20 pts) In Problem 5(b) of the previous exam, we design the following TM that decides D.
Assume the input is $w#w^R$ with $|w| = n$.

Count the number of steps needed as a function of n. You must explain the calculation instead of just giving a function of n. Note that we want the exact number instead of just an estimation. Verify your solution by simulating on 01#10.

(b) (10 pts) Redo (a) by considering the following two-tape TM designed in Problem 5(c) of the previous exam.

Verify your solution by simulating on 01#10.

Solution.

(a) If $n = 0$, then it takes 2 steps to go from q_1 to q_6 and then to q_{accept}. Otherwise $n \geq 1$, and the steps are counted as follows.

- 1 step from q_1 to q_2
- $n - 1$ steps when looping on q_2
• 1 step from q_2 to q_3
• consider one iteration of the loop from

$$\cdots \# q_3 \times \cdots \times 0 \cdots$$

to

$$\cdots \# q_3 \times \cdots \times 0 \cdots$$

(Note that we can assume the next digit is 0 by symmetry between 0 and 1.) We need

- k steps to $$\cdots \# \times \cdots \times q_3 0 \cdots$$
- 1 step to $$\cdots \# \times \cdots \times q_4 \times \cdots$$
- k steps to $$\cdots 0 \times \cdots \times q_4 \# \times \cdots \times \cdots$$
- $k + 1$ steps to $$\cdots q_4 0 \times \cdots \times \# \times \cdots \times \cdots$$
- 1 step to $$\cdots \times q_3 \times \cdots \times \# \times \cdots \times \cdots$$
- $k + 1$ steps to $$\cdots \times \times \cdots \times \# q_3 \times \cdots \times \cdots$$

Therefore, before the last iteration for handling $\$_0$ or $\$_1$, the number of steps is

$$\sum_{k=0}^{n-2} (4k + 4).$$

Now consider the last iteration from

$$\$ _0 \times \cdots \times \# q_3 \times \cdots \times 0$$

to

$$q_4 \$ _0 \times \cdots \times \# \times \cdots \times$$

Similar to the above discussion, we need

$$(n - 1) + 1 + (n - 1) + n = 3n - 1$$

steps.

• 1 step from q_4/q_5 back to q_1
• $n - 1$ steps when looping on q_1
• 1 step from q_1 to q_6
• n steps when looping on q_6
• 1 step from q_6 to q_{accept}
The number of steps is thus
\[
n + 1 + \sum_{k=0}^{n-2} (4k + 4) + 3n - 1 + 2n + 2 = 2n^2 + 4n + 2 = 2(n + 1)^2.
\]

Simulation on 01#10 takes \(2(2 + 1)^2 = 18\) steps:

- \(q_101\#10 \Rightarrow \mathbb{S}_0q_21\#10 \Rightarrow \mathbb{S}_0q_2\#10 \Rightarrow \mathbb{S}_01\#q_310\)
- \(\Rightarrow \mathbb{S}_0q_5\# \times 0 \Rightarrow \mathbb{S}_0q_5\# \times 0 \Rightarrow \mathbb{S}_0 \times q_3\# \times 0 \Rightarrow \mathbb{S}_0 \times q_3 \times 0\)
- \(\Rightarrow q_4\mathbb{S}_0 \times \# \times q_40 \Rightarrow \mathbb{S}_0 \times q_4 \# \times x \Rightarrow \mathbb{S}_0 \times q_4 \# \times x \Rightarrow \mathbb{S}_0q_4 \# \times x \Rightarrow \mathbb{S}_0 \times q_4 \times x\)
- \(\Rightarrow q_4\mathbb{S}_0 \times \# \times q_60 \Rightarrow \mathbb{S}_0 \times \# \times q_60 \Rightarrow \mathbb{S}_0 \times \# \times q_6 \times x\)
- \(\Rightarrow \mathbb{S}_0 \times \# \times q_6 \times \Rightarrow \mathbb{S}_0 \times \# \times \times q_6 \downarrow \Rightarrow \mathbb{S}_0 \times \# \times \times q_{\text{accept}} \\downarrow\)

(b) The steps are counted as follows:
- \(n\) steps when looping on \(q_1\)
- 1 step from \(q_1\) to \(q_2\)
- \(n\) steps when looping on \(q_2\)
- 1 step from \(q_2\) to \(q_{\text{accept}}\)

The number of steps is thus \(2n + 2 = 2(n + 1)\).

Simulation on 01#10 takes \(2(2 + 1) = 6\) steps:

- \(q_101\#10 \Rightarrow 0q_11\#10 \Rightarrow 01q_1\#10 \Rightarrow 01q_1\#10\)
- \(\Rightarrow 0q_21\#q_210 \Rightarrow 0q_21\#q_210 \Rightarrow q_201q_1\#1q_20 \Rightarrow q_2q_1\#1q_20\)
- \(\Rightarrow q_{\text{accept}}01q_1\#1q_{\text{accept}}01q_{\text{accept}}\)

Problem 3 (20 pts). Consider positive functions \(f, g : \mathbb{N} \rightarrow \mathbb{R}^+\). In our slides we respectively define
\[
f(n) = O(g(n))
\]
and
\[
f(n) = o(g(n))
\]
by
\[
\exists c > 0, \exists n_0, \forall n \geq n_0, f(n) \leq cg(n)
\]
\[
\forall c > 0, \exists n_0, \forall n \geq n_0, f(n) \leq cg(n).
\]

We also define
\[
f(n) = 2^{O(g(n))}
\]
if
\[
\exists c > 0, \exists n_0, \forall n \geq n_0, f(n) \leq 2^{cg(n)}
\]

(a) (10 pts) We would like to define \(f(n) = 2^{o(g(n))}\) by following the setting in (1):

\[
\forall c > 0, \exists n_0, \forall n \geq n_0, f(n) \leq 2^{cg(n)}
\]

We know that from (1), \(f(n) = o(g(n))\) is the same as
\[
\lim_{n \rightarrow \infty} \frac{f(n)}{g(n)} = 0.
\]

Can you write the definition in (2) similarly by using limit?
(b) (10 pts) Give an example of \(f(n) \) and \(g(n) \) such that \(f(n) = 2^{O(g(n))} \) but \(f(n) \neq 2^{o(g(n))} \).

Solution.

(a) Noting that \(f(n) \leq 2^{c g(n)} \iff \log_2 f(n) \leq c g(n) \), we can rewrite as

\[
\lim_{n \to \infty} \frac{\log_2 f(n)}{g(n)} = 0.
\]

Common mistake:

\[
\lim_{n \to \infty} \frac{f(n)}{2^{g(n)}} = 0.
\]

Example: \(f(n) = 2^n, g(n) = 2n \). Then

\[
\lim_{n \to \infty} \frac{\log_2 f(n)}{g(n)} = \lim_{n \to \infty} \frac{n}{2n} = \frac{1}{2} \neq 0,
\]

\[
\lim_{n \to \infty} \frac{f(n)}{2^{g(n)}} = \lim_{n \to \infty} \frac{2^n}{2^{2n}} = 0.
\]

(b) \(f(n) = 2^n, g(n) = n \). By taking \(c = n_0 = 1 \), we see that \(f(n) = 2^{O(g(n))} \). To prove that \(f(n) \neq 2^{o(g(n))} \), it is sufficient to calculate \(\lim_{n \to \infty} \frac{\log_2 f(n)}{g(n)} = 1 \neq 0 \). If you would like to use the definition in (2), you need to prove the opposite statement:

\[\exists c > 0, \forall n_0, \exists n \geq n_0, f(n) > 2^{c g(n)}. \]

Common mistake: Many failed to correctly prove this statement.

Problem 4 (10 pts). Consider \(f(n) = e^{-n}, g(n) = \sin n + 2 \). Check whether \(f(n) = o(g(n)) \) or not by the definition in (1). Thus to prove it you must find \(n_0 \) for every \(c \), and to disprove it you must find one \(c \) such that no \(n_0 \) satisfies the condition.

Solution. Yes. Given any \(c > 0 \), by letting \(n_0 = \max(1, \lceil -\ln c \rceil) \), we have

\[
e^{n_0} \geq e^{-\ln c} = \frac{1}{c},
\]

where the inequality is from the monotonicity of exp and the fact \(x \leq \lceil x \rceil \) for any real \(x \). Therefore

\[
e^{-n} \leq e^{-n_0} \leq c \leq c(\sin n + 2), \quad \forall n \geq n_0,
\]

where the last inequality follows from \(\sin n \geq -1 \).

Problem 5 (25 pts). Let \(\Sigma = \{0, 1\} \). Recall that the concatenation of two languages is defined by

\[A \circ B = \{xy \mid x \in A, y \in B\}. \]

(a) (5 pts) Prove that the class of context-free languages is closed under concatenation. In other words, show that if \(A, B \) are CFLs, then \(A \circ B \) is also a CFL.

(b) (10 pts) Let

\[L_{conc} = \{(G_1, G_2, w) \mid G_1, G_2 \text{ are CFGs, } w \in \Sigma^*, \text{ and } w \in L(G_1) \circ L(G_2)\} \]

Prove that \(L_{conc} \) is decidable by using the result of (a) and the property that \(A_{CFG} \) is decidable. Basically what you need to do is to construct a TM that decides \(L_{conc} \).
(c) (10 pts) Now suppose we do not know (a). Can you prove L_{conc} is decidable in another way without using the result of (a)? You may still use the property that A_{CFG} is decidable. That is, here you need a different TM from that in (b). Hint: Split w.

Solution.

(a) Suppose G_1, G_2 are CFGs that generate A, B, respectively. Let $G_1 = (V_1, \Sigma, R_1, S_1), G_2 = (V_2, \Sigma, R_2, S_2)$. We assume $V_1 \cap V_2 = \emptyset$; otherwise rename the variables and modify R_1, R_2, S_1, S_2 accordingly. Then $G = (V, \Sigma, R, S)$ generates $A \circ B$, where $V = V_1 \cup V_2 \cup \{S\}$, and $R = R_1 \cup R_2 \cup \{S \rightarrow S_1 S_2\}$. To prove that $L(G) = A \circ B$, on one hand, for any $w = w_1 w_2 \in A \circ B$, $S_1 \Rightarrow^* w_1$ and $S_2 \Rightarrow^* w_2$ imply that $S \Rightarrow^* w_1 w_2$. Thus $A \circ B \subseteq L(G)$. On the other hand, for any $w \in L(G)$, the only rule from $S \rightarrow S_1 S_2$ means that $S \rightarrow S_1 S_2 \Rightarrow w$. Thus w can be split into $w_1 w_2$ with $S_1 \Rightarrow^* w_1$ and $S_2 \Rightarrow^* w_2$. Then $w \in A \circ B$, and thus $L(G) \subseteq A \circ B$. Finally we have $L(G) = A \circ B$.

(b) The TM described by the following procedure decides L_{conc}.

- On input $\langle G_1, G_2, w \rangle$, check the format is correct.
- Construct CFG G that generates $L(G_1) \circ L(G_2)$ by the procedure in (a).
- Run the decider S of A_{CFG} on input $\langle G, w \rangle$.
- If S accepts, accept; otherwise, reject.

(c) The TM described by the following procedure decides L_{conc}.

- On input $\langle G_1, G_2, w \rangle$, check the format is correct.
- Let $n = |w|$. For $i = 0, 1, \ldots, n$,
 - Split $w = xy$, where $|x| = i, |y| = n - i$.
 - Run the decider S of A_{CFG} on inputs $\langle G_1, x \rangle$ and $\langle G_2, y \rangle$.
 - If S accept both inputs, accept.
- Reject.