• Please give details of your calculation. A direct answer without explanation is not counted.

• Your answers must be in English.

• Please carefully read problem statements.

• During the exam you are not allowed to borrow others’ class notes.

• Try to work on easier questions first.

Problem 1 (15 pts)

Convert the following CFG into CNF with $\Sigma = \{a, b\}$.

$$
S \rightarrow bS \mid E \mid \epsilon \\
E \rightarrow aEb \mid a
$$

And please follow the formal procedure, i.e. Theorem 2.9 of the textbook.

Problem 2 (20 pts)

Consider the following language

$$
\{w \mid 2n_1(w) \leq n_0(w) \leq 3n_1(w)\},
$$

where $\Sigma = \{0, 1\}$ and $n_{0/1}(w)$ means the number of 0’s (or 1’s) in w. Construct a PDA with ≤ 5 states to recognize this language. Give the formal definition of your PDF.

Problem 3 (20 pts)

Consider the following PDA with $\Sigma = \{0, 1\}$
Problem 4 (15 pts)

(a) Construct a Turing machine (i.e., showing the state diagram) for the language

\[\{0^n1^n \mid n \geq 0\}. \]

Note that we use the standard Turing machine rather than extensions such as nondeterministic Turing machine. The number of states is \(\leq 6 \), including \(q_a \) and \(q_r \). You can assume \(\Sigma = \{0,1\} \).

(b) Give the formal definition.

Problem 5 (15 pts)

Consider the language

\[\{w\#w \mid w \in \{0,1\}^*\}, \]

where \(\Sigma = \{0,1\} \).

(a) Construct a 2-tape Turing machine to recognize this language. We assume that
1. in the beginning, \sqcup(input) in the 1st tape.

2. we copy the second part to the 2nd tape and then compare strings in both tapes.

3. the number of states (including q_a and q_r) should be no more than 8.

No need to give the formal definition.

(b) Simulate two strings 01#01.

Problem 6 (15 pts)

Construct a nondeterministic Turing Machine with no more than 7 states (including q_a and q_r) to recognize the following language:

$$\{ww^R \mid w \in \{0,1\}^*\},$$

where w^R is the reverse of a string. No need to give the formal definition.