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Abstract— The nearness diagram (ND) navigation method is
a reactive navigation method used for obstacle avoidance in
which five different robot-environment states are defined and
five corresponding actions are designed carefully. In the ND+
navigation method, one more robot-environment state is added
and all action equations are reformed to both achieve smoother
robot motions and reduce manual parameter tuning. In this
paper, we argue that the original five states of the ND navigation
method is sufficient with the proposed self-tuning method. Two
states’ action rules of the ND navigation method are modified.
The wiggling motion in long corridors is significantly reduced,
and a parameter is self-tuned so that manual parameter tuning
is avoided. The experimental results using a real robot with a
laser scanner demonstrated that the proposed self-tuning ND
navigation (stND) approach is simple yet effective.

I. INTRODUCTION

Safely navigating through previously known or unknown
environments is one of the most fundamental requirements
for mobile robots. A number of the collision free navigation
approaches have been developed such as the potential field
method [1], vector field histogram [2], dynamic window
approach [3], and elastic band [4]. Recently, the nearness
diagram (ND) navigation method proposed by Minguez and
Montano [5][6] has showed satisfactory results in terms of
obstacle avoidance in crowded and troublesome environ-
ments. The ND navigation method is a reactive navigation
approach. First, a set of complete and exclusive situations
or robot-environment states are defined manually. Second,
these predefined situations are represented in a decision tree
by analyzing the relationships. The robot’s state is then
categorized into one of these predefined situations using a
decision-tree method [6][7] according to laser scanner data
during operation. For each situation, the robot will follow the
corresponding strategy to calculate its velocity and angular
velocity for accomplishing the task.

As the ND navigation method is reactive, the robot actions
can be not smooth often. The wiggling motions are often
observed even the robot is controlled using the ND navi-
gation method with a high-level path planner. It is possible
to fine-tune some parameters of the ND navigation method
to improve the smoothness of the robot motion [6]. In the
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Fig. 1. The NTU-PAL5 robot with a SICK LMS291 laser scanner was
used to verify the proposed approach in a long corridor.

newer version of ND navigation method (ND+), one more
situation is added and all action equations are reformed to
both achieve smoother robot motions and reduce manual
parameter tuning [7]. In this paper, we argue that the original
five states of the ND navigation method is sufficient with
the proposed self-tuning method. Two states’ action rules
of the ND navigation method are modified. The wiggling
motion in long corridors is significantly reduced, and a
parameter is self-tuned so that manual parameter tuning is
avoided. It could be argued that the wiggling motion could
be improved with high level path planning algorithms as
dense waypoints can be generated to guide the robot to
act smoother. But even with a good sub-goal generation
approach, an accurate robot localization system is critical,
and could be problematic and computational expensive in
practice. The proposed approach does not need any global
localization systems and high-level path planners to perform
smoother motion. The experiments were conducted using a
real robot with a laser scanner in a long corridor as depicted
in Figure 1. The results demonstrated that the proposed
self-tuning ND (stND) navigation approach is simple yet
effective.

The rest of this paper is organized as follows. The ND and
ND+ navigation methods are briefly introduced in Section
II. In Section III, the proposed approach is described in
detail. The experimental results are shown in Section IV.
The pros and cons of the proposed approaches and the
existing approaches are discussed in Section V. Finally, our
conclusions and future works are presented in Section VI.

II. THE ND AND ND+ NAVIGATION METHODS

In the section, the ND and ND+ navigation methods are
briefly reviewed and critical issues are discussed.



A. ND Navigation

Recall that the ND method first defines a set of complete
and exclusive situations and then uses these situations to
simplify the difficulty of robot navigation. The key of the ND
navigation method is to use a divide and conquer strategy
by setting criterions to identify the current situation of the
robot. The first criterion is the safety criterion. If there is any
obstacle within the predefined security zone, the robot would
be in the Low Safety state otherwise in the High Safety state.
Based on the obstacle distribution within the security zone,
the Low Safety state is further classified to in two classes:
the Low Safety 1 (LS1) state if the obstacles in the security
zone are only on one side of the gap (closest to goal) of the
free walking area, and the Low Safety 2 (LS2) state in which
the both sides are occupied with obstacles. The High Safety
state are further classified into three states. If the goal is
within the free walking area, it is in the High Safety Goal in
Region (HSGR) state. Otherwise, checking the width of the
free walking area, the robot would fall into the High Safety
Wide Region (HSWR) or the High Safety Narrow Region
(HSNR).

In the ND navigation method, there are several important
parameters which should be chosen carefully. Some parame-
ters are related to the robot information such as the shape, the
maximum velocity, and the maximum angular velocity of the
robot. Others are the implementation parameters such as the
safety distance, the bound of the angular width of a narrow
region, and the parameter for ensuring a smooth behavior
in the transitions among the situations. The robot could
suddenly change its motion just because of bad parameters.

B. ND+ Navigation

Two of the most important differences between ND and
ND+ are the new state for Low Safety and the reduction of
manual parameter tuning. The added situation is the Low
Safety Goal in Region (LSGR) in which there are obstacles
within the security zone, and the goal location is within
the free walking area. For more detailed discussion, see the
Section V.

Figure 2 illustrates the fundamental differences between
the ND and ND+ navigation approaches, and also shows the
focuses of the proposed self-tuning ND (stND) navigation
which are addressed in detail in the next section.

III. SELF-TUNING ND NAVIGATION

Intuitively, the action rules of HSGR, HSWR, and HSNR
should deal with the safer situations, and the polices of
LS1 and LS2 could handle low safety situations in crowded
or troublesome environments. However, the ND navigation
approach may have poor performance in terms of motion
smoothness. For instance, the robot motion can often wiggle
in long corridors as the robot states often transit between the
states of High Safety and Low Safety.

In this section, the proposed approach is described based
on the original ND navigation method. We intended to use a
method, which is as simple as possible, to solve the wiggling

Fig. 2. The first five states (solid line) are defined by the original ND
navigation method, whereas the ND+ navigation method define a new
criterion and the sixth state (dash line). Our approach uses only the first
five state and focus on the modification of actions for High Safety Narrow
Region (HSNR) and Low Safety 1 (LS1) states (bold line).

Fig. 3. The definitions of gaps, valleys, the free walking area, Srd, and
Sod. The blue points are raw laser range data. The black circle indicates the
robot position. The arrow indicates the chosen valley or the free walking
area.

motion problem for driving the robot straight in long corri-
dors. First, the action rule of one state in the ND navigation
method is modified. Second, an online tuning strategy for
the parameter p is proposed. These two modifications make
the path of the robot looks smoother and more straight than
the original ND navigation approach.

A. Important Terms from ND Navigation

This paper follows the notations defined in [6]. The related
variables are introduced for understanding the proposed
approach. A region is called a gap in which there are two
contiguous range measurements are either separated by more
than the robot diameter 2R or one of the measurements
returns no obstacle in range. See [6] for the detail information
on calculating the locations of gaps. Each pair of consecutive
gaps would define a region. The navigable region of the
robot is called a valley. For the valley which defined by
the gap closed to the goal, the direction information of that
gap is Srd. The direction information of the other gap of
that chosen valley, or the free walking area, is Sod. These
variable definitions are illustrated in Figure 3.

B. Action Design of High Safety Narrow Region (HSNR)

The definition of the High Safety Narrow Region (HSNR)
is that the robot is in a free walking area whose angular width
is smaller than a given angle. The action design for HSNR



Fig. 4. The red lines show Srd and Sod of the chosen valley of free
walking area. The green line presents the bisector approach in ND which is
the bisector of Srd and Sod. The blue line presents the midpoint approach
in stND which passes through the midpoint of yellow line. It could be
observed that the blue line passes the center zone of the corridor better than
the green line.

is to direct the robot through the center zone of the free
walking area. In the original ND navigation implementation,
the direction of the robot is computed as the bisector of
the direction of the discontinuities of the selected valley.
However, the robot motion using this rule may not be straight
enough in long corridors. It is observed that the robot would
not try to pass through the center of the corridor if the robot’s
heading angle is not parallel enough with the corridor.

The high level path planner could generate a sequence of
waypoints to guide the robot moving through the center of
the corridor. But we intended to use low level control and
simple rules to get a robust result. It is believed that the more
robust the low level control is, the better performance could
be achieved when high level planning involves in.

In ND, the direction information of the chosen valley is
used to get the resulting action angle. In detail, the Srd is
the sector corresponding to the rising discontinuity (closest to
the sector that contains the goal location) and the Sod is the
sector corresponding to the other discontinuity of the selected
valley. The resulting action of HSNR in ND is computed by:

Sθ =
Srd + Sod

2
(1)

The final heading sector Sθ is further used to compute
the translation velocity. In stND, the proposed action design
for HSNR is to compute the direction using not only the
direction but also the range information of Srd and Sod. In
detail, we calculate the midpoint of range data of Srd and
Sod, and then the motion direction is set by robot’s current
position and the midpoint. The action rules of HSNR in ND
and stND are illustrated in Figure 4.

C. Self-Tuning Method of Parameter p in LS1

With the modification of the action design in HSNR, a
more smooth and straight motion could be achieved. But
there are some parameters which should be carefully chosen
such as the parameters related to the robot itself. However,
in long corridors, the reactive method is highly sensitive to

Fig. 5. The robot wiggles at a high speed through the long corridor with
a big p in LS1.

the parameter p of LS1 which ensures a smooth behavior in
the transitions among the robot states.

Recall that the robot is in the LS1 state when the obstacles
in the security zone are only on one side of the gap (closest
to the goal) of the free walking area. The objectives of action
design of LS1 are to move the robot away from the closest
obstacle, and to move toward the gap of the free walking
area. The parameter p of LS1 effects the turning rate of
the robot for moving away from the closest obstacle. The
equation to compute the heading angle of the robot being in
the LS1 state of ND is described below.

Sp = |Srd − Sml| ∗ p+
Smax

2
(2)

Sθ = Srd + sign(Srd − Sml) ∗ Sp (3)

where Smax is a given static value and Sml is the closest
obstacle direction. The term sign(Srd − Sml) indicates the
right turn or left turn. The value of Sp controls the turning
level of the robot. Sθ is composed by Srd which contains the
goal direction information and the obstacle avoidance turning
angle. The magnitude of the parameter p would effect the
turning angle. The proposed approach here eliminates the
term Smax/2 but uses a self tuning method to adjust the p
value. The new equation of Sp becomes:

Sp = |Srd − Sml| ∗ p (4)

The experimental results show that the robot will make a
big turn in the LS1 state if p is too big. This behavior occurs
often in long corridors.

This wiggling motion is because the values of maximum
velocity and angular velocity are high, and the value of p is
also too high. In other words, the robot is too sensitive to get
rid of the closest obstacle. Even though avoiding obstacles is
critical important, the robot could act strangely if the robot
motion is too sensitive to the environment. Figure 5 shows
an experimental result in which the robot is wiggling at a
high speed and angular velocity with a relative high p. On
the other hand, the robot may lose the ability to escape from
LS1 if the value of p is set too low. Therefore, a suitable



value of p based on the environment should be found online
given that the other parameters such as maximum velocity
and angular velocity are set. The idea is simple yet effective.
A low value of p is chosen for more straight motion and the
value of p can be increased if necessary. The self-tuning
pseudo code is described in Algorithm 1.

Algorithm 1 The Online Tuning Algorithm of p
Require: (Statepre, Statenow) here, Statepre/Statenow

means the previous/current state of robot which is one
of the states defined by the ND method

1: Initialize p with the minimum value if it is the first call
2: if Statepre is LS1 then
3: if Statenow is LS1 then
4: Call IncreaseP ()
5: else
6: Call DecreaseP ()
7: end if
8: end if
9: Statepre ← Statenow

The function IncreaseP () and DecreaseP () in Algo-
rithm 1 online tune the value of p between the predetermined
upper bound and lower bound of p. If the calculated value
would be lower than the lower bound or exceed the upper
bound, these functions would set the p value to the boundary
value. Different implementations would effect the growing
and shrinking rate of p. Below our approaches are described
in detail.

1) Increasing Strategy: One of the easiest ways to con-
struct the function IncreaseP () is to add a static value to p
while this function is called. The static value could be chosen
according to experiments and observations. However, in the
other way, the increasing step is directly related to the robot’s
ability of obstacle avoidance. It could be decided that how
soon the robot should use the highest value to escape from
the LS1 state. Therefore, the function IncreaseP () can be
described as:

pn = p1 + (n− 1)d (5)

This approach presents the p value as one of the arithmetic
sequence in which the initial term p1 is the minimum value
of p. The symbol d stands for the positive common difference
here.

It should be noted that the arithmetic sequence would not
perform well if the robot is in LS1 for a long period of time.
That is, the growing rate of p could not quickly escape from
the LS1 state into the high safety states. Thus, the longer the
robot is in LS1 state, the higher growing rate of p should be.
The geometric sequence approach can be applied.

pn = p1 ∗ q(n−1) (6)

where the variable q stands for the common ratio which
is greater than 1. The growing rate of p would be slower
using common ratio at the beginning but be faster after some
certain iterations.

2) Decreasing Strategy: After the robot left the LS1 state,
the p value should be decreased to ensure that a relative low
turning angle and velocity are applied when the robot enters
the LS1 state again. One of the simplest ways to implement
the function DecreaseP () is to reset p to the initial value,
the minimum value of p. Recall that we would like to avoid
the wiggling behavior in long corridors. Resetting p could
guarantee that the minimum turning angle is used to guide
the robot to the center of the corridor smoothly.

It is also feasible to design the decreasing strategy fol-
lowing the same idea of the increasing strategy but with the
reverse action. The p value can be decreased by one common
difference using the arithmetic sequence approach or by
dividing the p value with a common ratio in the geometric
sequence approach. Compared to the reset approach, these
methods would let the robot have a higher p value during
the operation. With the higher value of p, the robot could
have better performance in troublesome environments.

IV. EXPERIMENTAL RESULTS

A differential-drive robot with a SICK LMS291 laser
scanner was used to verify the proposed stND navigation
approach. The width of the robot is 44 centimeters and the
length is 52 centimeters. The testing environment is a long
corridor (2.5 meters x 43.0 meters) as depicted in Figure
1). One extra SICK LMS291 laser scanner was used and
located on the left side of the corridor for recording the robot
trajectories and providing ground truth. The ND navigation
method with the proposed midpoint approach for HSGR,
the stND navigation method with the proposed midpoint
approach for HSGR and with the arithmetic sequence ap-
proach using common differences 0.10 and 0.05 for LS1 are
implemented and compared.

Figure 6 (a) shows the robot trajectories using the ND
navigation method with the proposed midpoint approach for
HSNR only in which the robot moved from the left end of
the corridor to right. The states of the robot are shown in
Figure 7 (a) in which the number of HSNR state is very few
so it could be seen as the original ND navigation method.
Figure 6 (b)(c) and Figure 7 (b)(c) show the experimental
results in which the robot moved from the right end of the
corridor to left with different settings. As a laser scanner and
other equipments were located on the left side of the corridor
which create two narrow passageways, the collected scan
data are quite different between the right-to-left and left-to-
right test runs. Thus we could use the figure 6 (a) as original
ND result and compare it with the proposed method.

Figures 6 demonstrate that the proposed stND navigation
approaches perform less wiggling motion than the ND nav-
igation method. The robot has fewer big turns with the use
of the proposed methods. Further comparing (b) and (c) of
Figures 6, the robot is nimbler in (b) but gets a slightly
wiggly trajectory than (c). This result shows that the stND
navigation method could ease the wiggling level in long
corridors.

It can be observed that the robot would stay less away from
the center zone of the corridor with the use of the proposed



(a) ND with the proposed midpoint approach for HSNR

(b) stND with a common difference 0.10 for p in LS1

(c) stND with a common difference 0.05 for p in LS1

Fig. 6. The robot trajectories using different approaches in which the robot
moved from the left end of the corridor to right in (a) and from the right
end of the corridor to left in (b) and (c).
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mon difference 0.05 for
p in LS1

Fig. 7. The robot states corresponding to the results in Figure 6. The state
number 0 to 6 stands for: LS1, LS2, HSGR, HSWR, HSNR, no path, and
too close. The last two states are added to include the situations that the
robot can not find a path and there is an emergency to stop the robot. The
x-axis indicates the iterations of the robot which costs approximately 0.25
second for one iteration.

modification of HSNR as depicted in Figure 7. Note that the
proposed approach would ease the burden of high level path
planning without many waypoints generation.

For ensuring the proposed method still could work in
crowded environment, we also test our algorithm in the
environment other than long corridor. Figure 8 demonstrates
that the proposed stND navigation approaches perform nice
result in crowded environment. Figure 9 is the corresponding
state of the result.

V. DISCUSSIONS

TABLE I
THE COMPARISON BETWEEN ND, ND+, STND

ND ND+ stND
Number of states 5 6 5
Use parameter p Yes (static) No Yes (self-

tuned)

Fig. 8. The robot trajectory in crowded environment with a very narrow
passage.
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Fig. 9. The robot states corresponding to the results in Figure 8. The state
number 0 to 6 stands for: LS1, LS2, HSGR, HSWR, HSNR, no path, and
too close.

TABLE II
THE COMPARISON OF ACTIONS OF ND, ND+, AND STND. FROM TOP TO

BOTTOM: HSGR, HSWR, HSNR. WE TRANSFER SECTOR

INFORMATION INTO ANGLE FOR ROBOT’S HEADING: θ = bisector(S)

HSGR ND ND+ stND
θsol θgoal θgoal θgoal

HSWR ND ND+ stND
θdir1 θrd θrd θrd
θdir2 θrd θrd θrd
θpre

θmax
2

arcsin(R+Ds
Drd

) 0
θdev1 0 0 0
θdev2 0 0 0
θsol

θdir1+θdir2
2

±
(θpre +
θdev1+θdev2

2
)

= θrd ± θmax
2

θdir1+θdir2
2

±
(θpre +
θdev1+θdev2

2
)

= θrd ±
arcsin(R+Ds

Drd
)

θdir1+θdir2
2

±
(θpre +
θdev1+θdev2

2
)

= θrd

HSNR ND ND+ stND
θdir1 θrd θrd θrd
θdir2 θod θod θod
θdev1 0 0 0
θdev2 0 0 0
θsol

θdir1+θdir2
2

±
(θpre +
θdev1+θdev2

2
)

=
θrd+θod

2

θdir1+θdir2
2

±
(θpre +
θdev1+θdev2

2
)

=
θrd+θod

2

θmidpoint(Srd,Sod)
±(θpre +
θdev1+θdev2

2
) =

θmidpoint(Srd,Sod)



In this section, the pros and cons of the proposed ap-
proaches and the existing approaches are compared and
discussed. We will use Table I, II, and III to fully compare
the proposed stND navigation method with ND and ND+.

The Table I shows the basic comparison between the three
approaches. The proposed method use only five states which
is the same as ND method whereas the ND+ has the sixth
state (LSGR). ND method has parameter p for LS1 state but
the user has to experimentally tune the value to get a smooth
result. In ND+, it adjusts the deviation of object avoidance
using the distance as weighting to eliminate the parameter p.
In stND navigation method, we keep the parameter p but use
a self-tuning method to achieve the smoothness. The detailed
mathematical equations and the value of each terms are listed
in Table II and III. We will then compare each methods with
different states.

First, if the robot is in the HSGR state, the θsol would be
set to θgoal, which would be the final setting of the robot
heading. This is the same for all methods. Otherwise, except
the case of stND navigation method in the HSNR state, the
θsol would be calculated as:

θsol =
θdir1 + θdir2

2
± (θpre +

θdev1 + θdev2
2

) (7)

For the stND navigation method in the HSNR state, the
θsol becomes:

θsol = θmidpoint(Srd,Sod) ± (θpre +
θdev1 + θdev2

2
) (8)

The θsol in Eq. (7) and Eq. (8) contains three parts. First
part is the heading direction for approaching the goal, which
is θdir1+θdir2

2 for all other cases except in the HSNR state
for the stND navigation method whereas the stND navigation
method uses θmidpoint(Srd,Sod) when robot is in the HSNR
state, which is one of the contributions of this paper. Then the
second and third part are the deviation of the robot heading,
which are used for keeping robot away from obstacles. θpre is
used to keep a sufficient distance away from nearby obstacles
to maintain robot in high safety state after the robot moving
along the final direction with some certain distance. The last
one, θdev1+θdev2

2 , is used to avoid obstacles in order to escape
low safety state or guide robot not to hit the obstacles nearby
during the operation.

The θsol would be the result most of the times, but
sometimes there may be some adjustments based on multiple
heading choices. So, we may use θsol′ for the final heading
choice if needed. We would use θcloserToθrd

(.) which could
take multiple inputs and output the result which is closer to
the specified θrd. We may then adjust it to get the θsol′ .

We then carefully analyze the rest of the states: HSWR,
HSNR, LS1, LS2, and LSGR using Table II and III. First,
we check the HSWR state. Since the robot is in high safety
state, the basic heading information is contained only in θrd,
and the θdir1 and θdir2 for all methods are the same. The
third part, which consists θdev1 and θdev2, for all methods
is set to zero since the robot is not in emergency. The

main difference between them in the HSWR state is θpre.
In original ND method, it uses a pre-defined value θmax

2 to
keep robot in high safety state. Whereas in ND+ the radius
of the robot R, safety distance Ds, and the distance to the
rising discontinuity Drd are combined to achieve the same
goal. The radian arcsin(R+Ds

Drd
) ensures the robot center to

have the distance R+Ds, which is the decision boundary of
low safety or high safety, away from obstacle which creates
the θrd at first after robot moving along the direction θsol
with distance Drd∗cos(arcsin(R+Ds

Drd
)). In stND method, we

just set the value as zero because even without the additional
deviation and the robot may enter the LS1 state, the action of
LS1 could keep the robot away from obstacles and maintain
the smoothness of the trajectory.

Second, we check the HSNR state. The values of θdir1,
θdir2, θpre, θdev1, and θdir2 for ND, ND+, and stND naviga-
tion methods are all the same. Because the region is narrow,
the goal now is to guide the robot through the center zone
of the chosen region and we set the value of θpre to zero.
θdev1 and θdev2 for all methods are also set to zero since
the robot is not in emergency. The ND and ND+ navigation
methods use the bisector result whereas the proposed method
uses the midpoint approach mentioned in Section III-B. The
discussion of the modification of the HSNR state has been
showed in Section III-B and this modification would not
cause robot fail since the robot is in a high safety state.

Which we want to address here is that both the ND+ nav-
igation and the smooth nearness diagram (SND) navigation
method [9] do not use the midpoint of range data of the left
and right valleys to guide the robot. In addition, the proposed
method applies simple yet effective strategies tries to improve
ND. Instead of using the information of the closest obstacle
around the robot, the SND navigation method uses the in-
formation of all obstacles for improving motion smoothness.
We have shown that the proposed method could still get nice
results using just the information of the closest obstacle.

Then we check the low safety states. The action for the
LS1 state is to avoid the closest obstacle while still approach
the goal. The θdir1 and θdir2 for ND, ND+, and stND
navigation methods are the same thus they get the same
direction from goal information. However, the θpre, θdev1,
and θdev2 are different. As the same in HSWR, the ND
navigation method uses θmax

2 for θpre which is a pre-defined
value. As the same reason from HSWR, the ND+ navigation
method uses arcsin(R+Ds

Drd
) for θpre. Then they further adjust

the robot heading using θdev1 and θdev2. The ND uses the
information of the closest obstacle and an experimentally
tuned parameter p for obstacle avoidance and the ND+
considers the deviation with the distance and direction of
the closest obstacle and the safety distance to eliminate the
parameter p. However, the proposed method set the θpre
to zero. We then use a online self-tuning p to guide the
robot to escape from low safety state to high safety state
and maintain the smoothness between LS1 and high safety
states as mentioned in Section III-C. Here, the θdev1 and
θdev2 are the same value since the obstacle in security zone
occupied only one side of the robot. The experiments show



TABLE III
THE COMPARISON OF ACTIONS OF ND, ND+, AND STND. FROM TOP TO BOTTOM: LS1, LS2, LSGR. THE Dobs IS THE DISTANCE OF THE CLOSEST

OBSTACLE TO THE BOUNDARY OF THE ROBOT AND THE θobs IS THE ANGLE RESPECT TO THE CENTER OF THE ROBOT

LS1 ND ND+ stND
θdir1 θrd θrd θrd
θdir2 θrd θrd θrd
θdev1 |θrd − θml| ∗ pstatic Ds−Dobs

Ds
·|(π+θobs)−|θdir1−

θpre||
|θrd − θml| ∗ pselftuned

θdev2 |θrd − θml| ∗ pstatic Ds−Dobs
Ds

·|(π+θobs)−|θdir2−
θpre||

|θrd − θml| ∗ pselftuned

θsol
θdir1+θdir2

2
± (θpre +

θdev1+θdev2
2

) = θrd±( θmax
2

+
|θrd − θml| ∗ pstatic)

θdir1+θdir2
2

± (θpre +
θdev1+θdev2

2
) = θrd ±

(arcsin(R+Ds
Drd

) +
Ds−Dobs

Ds
·

|(π + θobs) − |θrd −
arcsin(R+Ds

Drd
)||)

θdir1+θdir2
2

± (θpre +
θdev1+θdev2

2
) = θrd ± |θrd −

θml| ∗ pselftuned

LS2 ND ND+ stND
θdir1 θml θrd θml
θdir2 θmr θod θmr

θdev1 0 Ds−Dobs1
Ds

· |(π + θobs1) −
|θdir1 − arcsin(R+Ds

Drd
)||

0

θdev2 0 Ds−Dobs2
Ds

· |(π + θobs2) −
|θdir2 − arcsin(R+Ds

Drd
)||

0

θsol
θdir1+θdir2

2
± (θpre +

θdev1+θdev2
2

) =
θml+θmr

2

θdir1+θdir2
2

± (θpre +
θdev1+θdev2

2
) = θrd ±

(
Ds−Dobs1

2∗Ds
· |(π + θobs1) −

|θrd − arcsin(R+Ds
Drd

)|| +
Ds−Dobs2

2∗Ds
· |(π + θobs2) −

|θod − arcsin(R+Ds
Drd

)||)

θdir1+θdir2
2

± (θpre +
θdev1+θdev2

2
) =

θml+θmr
2

θsol′ θcloserToθrd
(θsol, θsol+π)± c θsol θcloserToθrd

(θsol, θsol+π)± c

LSGR ND ND+ stND
θdir1 See LS1/LS2 θgoal See LS1/LS2
θdir2 See LS1/LS2 θgoal See LS1/LS2
θpre See LS1/LS2 0 0
θdev1 See LS1/LS2 Ds−Dobs

Ds
·|(π+θobs)−|θdir1−

θpre||
See LS1/LS2

θdev2 See LS1/LS2 Ds−Dobs
Ds

·|(π+θobs)−|θdir2−
θpre||

See LS1/LS2

θsol See LS1/LS2 θdir1+θdir2
2

± (θpre +
θdev1+θdev2

2
) = θgoal ±

(
Ds−Dobs

Ds
· |(π+θobs)−θgoal|)

See LS1/LS2

θsol′ See LS1/LS2 θsol See LS1/LS2

good performance of this modification.

For the LS2 state, the final direction should guide the
robot in the center of the obstacles and move it to the goal
location. Our proposed method follows the ND navigation
approach thus the performance would be the same as ND
navigation in this situation. The main direction is based on
the bisector of the closest obstacles on both sides of the
robot. This information is obtained from θml and θmr. It
then chooses the closer one to θrd from bisector result and its
opposite direction since it implicitly contains the information
of the goal location. The ND+ navigation approach uses the
bisector of θrd and θod thus it has the benefit that it does
not need to check the opposite direction as ND navigation
method whereas the result of direction does not consider the
true obstacles around. On the other hand, the bisector result

in ND navigation method does not guarantee the robot to
drive in the center of the obstacles. So, the θdev1, and θdev2
in ND+ navigation method and the correct function c in ND
and stND navigation methods both result in the desire of
centering the robot between the obstacles. The difference
between these two approaches is that using bisector of the
obstacles cares more about centering issue first whereas using
bisector of θrd and θod cares more about the goal location.
Since both approaches then further consider more about the
goal location and obstacles nearby to adjust the final results,
the both approaches are satisfied with LS2 case.

LSGR is not listed as one of the states in the ND and
stND navigation methods. However, for a fully comparison
between ND, ND+, and stND navigation methods, we list
it in the Table II. Actually, the LSGR state is a low safety



state thus it could be classified into LS1 or LS2, based on
the distribution of the obstacles within the security zone.
The corresponding action for LSGR is to guide the robot
to approach the goal while not to hit the obstacles within
the security region. In this sense, the LS1 and LS2 states
are sufficient for completing the low safety tasks. The main
advantage of LSGR is that it sets θpre as zero thus in the
low safety goal in region with obstacles just in one side
of the security zone one can argue that the result heading
would be closer to the goal location compared with LS1
state. However, the proposed method also set θpre as zero
and use a online self-tuning strategy to reasonably adjust the
heading for the LS1 state. For the LS2 state, all of the ND,
ND+, and stND set θpre as zero so the heading would be
good enough. The result would be different between LS2
and LSGR if the free walking area is wide and the goal
location is far away from the bisector of θml and θmr in
ND and stND navigation methods or the bisector of θrd and
θod in ND+ navigation method. We argue that since the free
walking area is wide, the robot would then be in HSGR after
it escapes from low safety state and then adjust its heading
based on the corresponding rules. So, combining with the
arguments above, the proposed method does not have the
sixth state.

To further compare the stND navigation method with the
ND+ navigation method, we need to address their differences
in terms of the LSGR and the LS1 states. In the LSGR state
of the ND+ navigation method, the direction of the robot
motion is set to the direction to the goal location plus a
deviation that depends on the distance to the closest obstacle.
The closer the distance is, the change of the heading is
bigger. Therefore the robot trajectory using ND+ may be not
smooth when a close nearby obstacle is firstly encountered.
As the action rule of the ND+ LS1 state not only considers
the distance to the closest obstacle but also adds an angle
to prevent the obstacle from entering the security zone, the
heading of the robot in the LS1 state of the ND+ navigation
method would have a greater change compared to the LSGR
state.

The ND+ navigation method may drive the robot move
smoother than the original ND navigation method as LSGR
would not have a greater robot heading change. In the
proposed stND navigation method, there is no LSGR and
robot heading changes are reduced significantly in the LS1
state. In addition, online parameter tuning is applied to
reduce wiggling motions and to escape from the low safety
states simultaneously. The robot would not have a sudden
change in a low safety state but in ND+ the robot heading
change using ND+ is big when an obstacle is nearby. We
have shown that the original five states of the ND navigation
method are sufficient given that the p value is online adjusted
nicely.

VI. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

This paper presented the modification of the ND HSNR
state and an online parameter tuning strategy for smooth

motions in long corridors. The proposed approach would
not lose the ability of the original ND navigation method
in open space, and keep the same power when the robot
is in troublesome environments. The experimental results
show that the proposed stND navigation method drives the
robot more straight and smoother in such long corridor
environments.

B. Future Works

It has been shown that the whole scan data could be
used to achieve smoother motions [9]. This should be of
our interest to exploit this idea. It is also our future work
to see if the status of the surroundings could be recognized
and used for deciding a proper level of reaction. It should
be possible to make a more suitable strategy during online
operation with higher level scene understanding. In addition,
the idea of learning parameters by observing how human
operates a robot [8] will be explored to improve the proposed
approaches.
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