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Abstract 
The weakest link in many mobile robots is perception. In order to build robots that are 
reliable and dependable and safe, we need to build robots that can see. Perception is 
becoming a solved problem for certain constrained environments. But for robots working 
outdoors, and at high speeds, and in close proximity to people, perception is still 
incomplete. Our robots need to see objects; to detect motion; and to detect which of those 
objects are people. In the current state of the art, this requires multiple sensors and 
multiple means of interpretation. This paper illustrates those principles in the context of 
the CMU Navlab Group’s work on vehicle safety for busses and passenger cars. 
 

1 Introduction 
Mobile robots can be unreliable and undependable for a number of reasons: mechanical 
failures, actuation failures, planning failures, computing crashes, etc. Most of these 
weaknesses have been addressed for certain environments by engineering approaches: 
AGVs operate in factories, robots deliver mail in offices and deliver medicines in 
hospitals, the ConneXXion system shuttles people from a bus stop to their offices, 
experimental robots run in museums and train stations. These machines are now taken for 
granted: nobody worries about mechanical failure or runaway actuators. People are 
comfortable working in close proximity to them, or even riding on board. A recent report 
on the ConneXXion robot sounds a disappointed tone: riders who could choose either the 
driverless vehicle or a conventional bus apparently picked whichever one arrived first.1 
While this may be bad news for companies that want to make a splash with attractive 
vehicles, it’s good news for robotics as a field: the public trusts these vehicles and has 
stopped even noticing. 
 
These successful applications tend to share two characteristics:  

1. The environment is “clean”. It is often instrumented (with beacons or buried 
navigation aids) or at least mapped (by leading the vehicle around by hand and 
collecting observations). Obstacles are relatively easy to detect, since they are 
easily sensed and segmented from the flat floor or pre-mapped walls. 

2. The vehicles move slowly. If an obstacle is detected, the vehicle can simply stop. 
In some cases, the robot stays put until its preloaded path becomes clear. In other 
cases, the robot is allowed certain simple obstacle avoidance maneuvers. 

 



But our ambitions, both within our research group at CMU and in the larger robotics 
community, extend beyond carefully-mapped factory floors and slow-moving robots. The 
CMU Navlab group, in particular, is working on robot cars, trucks, and busses. Moving 
from the environments that have successful applications to fully automatic driving on 
public roads raises a host of issues. Building dependable mechanisms, actuators, 
planners, and computers will be a challenge; making them affordable to the automotive 
market will be more of a challenge. Many of these challenges, however, can be met by 
extensions of the existing dependable systems on current AGVs and other robot vehicles. 
 
The biggest open research challenge is in perception. Operating outdoors, on streets and 
roads, there are many more kinds of things to see; many more moving objects; and much 
more variation in lighting, weather, and other perception conditions. Cars, trucks, and 
busses also operate at much higher speeds than AGVs, so simply detecting an anomaly 
and coming to a stop is not a sufficient response. 
 
Our approach to perception for dependable outdoor vehicles is: 

1. See everything. 
2. See everything again, and fuse. 
3. Detect motion and predict future motion. 
4. Detect people as a special case. 

The rest of this paper outlines our work on those four areas. 

2 See Everything 
Our current main focus is driving in crowded urban environments. In order to build a 
practical system in the near term, our emphasis is on driver assistance rather than on full 
automation. Our largest ongoing project is in assisting bus drivers, giving them 
perception particularly on the sides of the bus and eventually full 360 degree coverage. 
 
We have studied accident reports in several transit jurisdictions to assess the most likely 
causes of accidents.2 In some ways, our anecdotal evidence is even more interesting. A 
casual observation of the sides of busses gives sufficient evidence of the number of side-
impact scrapes. Conversations with bus drivers give illustrations of the unusual cases: 
bicycles going around the curb side of a bus; pedestrians climbing though fences and 
stepping into the path of a counter-flow bus lane; pedestrians not seeing the side of a 
stationary bus, walking into it, falling down, then being struck when the bus resumes 
motion; passengers alighting from a bus then walking immediately in front of the bus, 
obscured from the driver’s viewpoint by the fare box. It is a tribute to the professionalism 
of bus operators that bus accident rates are low; but the transit industry would like 
accident rates to be even lower, and is enthusiastic about help from the robotics 
community. 
 
It is unlikely that any single sensor will be able to detect all objects around the bus. For 
example, for one simple scenario that we are addressing, we need to detect parked cars, 
bicycles, pedestrians, oncoming vehicles, and overtaking vehicles. An analysis of 
required sensing functions, and of sensors suitable for each function, is shown in the table 
below. 
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Detect parked object in lane ahead             
 Recognize lane markings            ● 

Detect object in front of it ● ● ● ●  ● ● ● ● ● ●  
 Classify object as in its lane    ●     ● ● ● ● 
 Determine if object is 
stationary 

● ● ● ●   ● ● ● ● ●  

Detect a bicycle approaching from right             
Detect object to front and right  ● ● ● ●  ● ● ● ● ● ●  
Determine velocity / trajectory ● ● ● ●    ● ● ● ●  
Find bicycle when occluded ● ● ● ●      ● ●  

Detect an object (stationary pedestrian)             
Recognize curb boundary          ● ●  
Detect object to the right side ● ● ● ●  ● ● ●  ● ●  
Classify object on the sidewalk     ●      ● ●  

Detect an object (moving pedestrian)             
Recognize curb boundary          ● ●  
Detect object to the right side ● ● ● ●  ● ● ●  ● ●  
Determine velocity / trajectory ● ● ● ●    ●  ● ●  
Classify object as on sidewalk     ●      ● ●  

Detect oncoming vehicles             
 Recognize lane markings            ● 

Detect object on front and left  ● ● ● ●  ● ● ● ● ● ●  
 Classify object as not in its 
lane 

   ●     ● ● ● ● 

 Determine that object is 
moving  

   ●   ● ● ● ● ●  

Detect vehicle in same lane behind it              
 Recognize lane markings            ● 

Detect object to the rear ● ● ● ●  ● ● ● ● ● ●  
Classify object as in its lane    ●     ● ● ● ● 
Determine that object is 
moving with the flow of traffic 

   ●   ● ● ● ● ●  

Total number of functions supported 
by sensor type 

10 10 10 17 0 6 9 11 11 19 19 6 

 

Table 1: Functions vs. sensors for an urban driving scenario 

 
The conclusion from this analysis is that no one sensor is capable of performing all 
sensing functions; instead, we need a set of sensors, and sensor fusion methods. We are 
using radars and ladars from commercial vendors. We are building our own light-stripe 
range sensor and optical flow object detector, as described below. 
 



 
 
 
2.1 Light-Stripe Range Sensor 
We are building a laser line-stripe rangefinder suitable for use outdoors. The principle of 
a line-stripe range sensor is well known: the light of a laser is focused in one direction 
and fanned in the other and thereby produces a plane of light. A video camera is placed at 
a distance from the laser and observes where the light intersects objects. An example can 
be seen on the left in Figure 1. The line can just barely be identified on the garbage can in 
the foreground and on the legs of the person.  

Figure 1 Left, view of the camera without background suppression. The arrows point to places where 
the laser line can be seen. The box in the back is positioned at 4m from the camera. Right, view of the 
camera with background suppression. The arrow points to where the laser line hits the box. 

To make the line stand out more clearly, the background can be suppressed. This is done 
on the right in Figure 1. The laser points are extracted, then the distance to each point is 
calculated by triangulation based on the geometry of the laser and camera. The resulting 
map is shown in Figure 2. The advantage of this sensor is that it can produce a single 
stripe of range information, at frame rates, with no moving parts. 

Figure 2 The extracted line in x-y world coordinates 

trash

shelf with 
clutter 

box

person



 
The difficulty of building this sensor is making it work in bright sunlight, where the laser 
light stripe would normally be hard to detect against the bright background. The laser 
power is limited by eye safety regulations. We use several approaches in parallel to make 
the laser more easily detectable: 

• Filtering: a bandpass filter that closely matches the laser is put over the camera 
• Shuttering: the laser is fired in a pulse of a few microseconds, and the camera’s 

electronic shutter is opened for the same interval 
• Image subtraction: For a stationary scene, it is easy to collect two images, one 

with the laser on and one with it off, and subtract images. For a moving scene, 
implementing this process requires image-splitting optics or image registration. 

The results to date are that the light striper is suitable for limited ranges under most 
viewing conditions. We plan to use the light stripe ranger to detect nearby objects, and 
specifically to detect and track the curb. 
 
2.2 Omnicamera Optical Flow 

 

Figure 3: Left: Image from the omni-camera. The vehicle can be seen on the right side of the image. 
Right: the unwarped image, converted into cylindrical coordinates. The box at the upper left shows 
the portion of interest, corresponding to a forward-looking image. 

A second sensing system we are developing for our vehicles is optical flow based on 
omnicamera sensing. Since most of the vehicle motion is confined to a plane, the image 
motion of interest will primarily be horizontal (in the unwarped images; circumferential 
in the original coordinates). We unwarp only the portion of the image corresponding to 
looking forward and approximately horizontal. We run a vertical Sobel operator to find 
vertical edges, then track them from image to image. Figure 4 shows an original image, 
and a sequence of five Sobel images from successive frames. The motion from image to 
image is relatively small and consistent, enabling tracking edges across the sequence. 
Figure 5 shows the vehicle motion and object positions calculated for one sequence. 
 

 

 

Figure 4: Original image, and sequence of five edge images. 



 

 

3 See Everything Again 
While the individual sensors are good, none of them can see all the features that we need 
to detect; and no one sensor is reliable in all circumstances. Thus, a dominant theme of 
our work is sensor fusion. It is our thesis that: 

1) no single sensor will provide complete and affordable coverage, therefore sensor 
fusion will be required; 

2) no single sensor fusion methodology will be suitable for all combinations of 
sensors. 

There are many techniques that can be used for sensor fusion: evidence grids, Kalman 
filters, sensor co-location, etc. Our philosophy is not to use a single kind of fusion for all 
applications, but rather to use the most appropriate fusion method for each set of sensors. 
Accordingly, in our existing design, we use different kinds of fusion at different points in 
the system. Figure 6 illustrates the overall system design and the opportunities for fusion. 
 
3.1 Multi-Sensor Fusion 
Simple radars by themselves measure range but not bearing. Optical flow processing by 
itself produces bearing information but no true range data. Combining the two produces 
much richer data than either one could independently.  
 
The most compelling example is in the case of moving objects. A simple radar will 
produce a range measurement, but no information of object size or bearing. Optical flow 
processing essentially tracks a feature as the vehicle moves, and therefore generates a set 
of rays pointing towards the tracked object, one ray for each vehicle position. In a static 
world, if the vehicle motion is well known, the rays will all intersect at a single point, 
which is the object’s location. But if the object is moving at the same time as the vehicle 

Figure 5: Map built from optical flow.  
The line segments show the calculated 
vehicle position and heading at each 
frame. The points show calculated object 
positions. Each object position is 
calculated as the closest intersection of 
five lines of sight from the optical 
tracking.  The next step is to filter 
calculated positions over more than five 
observations, to reduce the scatter around 
the mean locations. 



(e.g. another moving car, a bicyclist, etc) then the intersection of the rays will not be the 
correct location of the object. In effect, optical flow gives a linear relationship between 
object velocity, distance, and size, rather than any absolute measurement. A single range 
measurement, for example from a simple radar, will fix the distance to the object, and 
thus allow unambiguous determination of velocity and size. 

 

Figure 6: Fusion methods at various places in the data flow. 

3.2 Temporal Fusion 
Lidar and light-stripe ranging give range from a single viewpoint, but are subject to 
occlusions and give no direct measurement of velocity information. The fusion 
processing used for them is time-based, watching the same sensor over multiple scans as 
the vehicle moves and finding matching data form scan to scan; details are given in 
section 4. 
3.3 Single-Sensor Fusion 
The easiest case of fusion is doing different kinds of processing on the same data, then 
combining the results. The stereo processing, described below in section 5, processes 
stereo images to calculate range data and processes grayscale images to detect people. 
Since the underlying data come form the same sensor, fusion is straightforward. 
3.4 Map-Based Fusion 
The output of each subsystem is a symbolic abstraction of the world from the point of 
view of that subsystem.  These symbolic abstractions of object positions, speeds, shapes, 
and classifications can be painted into a dynamic environment map, which then forms a 
common, although abstracted, representation of the world.  Inevitably there will be 
significant information lost in the abstraction process, but the abstracted information is 
vastly more tractable, and can be dealt with in a more general manner.  We have 
structured our world map management system as a "hypothesis pool," in which abstract 
information about objects from the measurement fusion subsystems form, support, and 
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weaken hypotheses about the world.  We have structured the map management system to 
be able to experiment with a wide variety of hypotheses.  For example, if the 
measurement subsystems produce estimates of object positions and velocities, it is 
straightforward to assign sensed objects to object hypotheses using simple nearest 
neighbor data association and maintain hypotheses of object positions and velocities with 
a linear Kalman filter.  Beyond such simple, generic map-based fusion, we can build 
more complicated hypotheses which actually reason about the measurement subsystem 
capabilities in order to form a more accurate, although still generic, model of the 
environment. The fused map information becomes the system’s model of the world which 
can be displayed to the user or propagated to situational awareness modules. 

4 Detect Motion And Predict Future Motion 
Detecting objects is necessary but not sufficient; the question we really want to answer is 
not only “where are nearby objects now?” but “where will objects move to in the 
future?”. We are using ladar processing to find moving objects, and to perform some 
limited object classification. Range data processing has been investigated for mining3; 
off-road driving and mapping 4; indoor navigation 5 6 7; and other applications. But only a 
small amount of this work has investigated using lidar data to find and track moving 
vehicles8: we are in essence tackling two problems at once: SLAM (Simultaneous 
Localization And Mapping)9 and DTCMO (Detection, Tracking and Classification of 
Moving Objects). 
 
We mounted a Sick ladar on the side of our Navlab 8 vehicle, drove through the CMU 
campus and around nearby streets, and collected range data. For each frame of range 
data, we first segment the range map into connected objects. For each object, we check 
for a match against the ongoing “moving 
objects” list, and separate the points 
associated with moving objects.  In the 
second step, we use an Iterative Closest 
Points (ICP) algorithm to register non-
moving points with the local map, built 
from the previous scans, in order to 
compute relative vehicle position. The 
idea is to use the ICP rule to establish 
correspondences between points in the 
current scan and the local map and then 
solve the point-to-point least-squares 

problem to compute the relative pose of 
the current scan and the local map. We use 
a Kalman filter to predict the pose of the 
vehicle. 
 
After the registration between the two frames is found, the moving object detection 
algorithm uses the calculated vehicle pose to separate any new moving objects from 
stationary objects. From previous scans we know which areas should not be occupied. If 

Figure 7: Localization and Mapping 



we find an object in these areas, that means this object is moving. Then the whole process 
iterates. The results of relative localization and mapping are shown in Figure 7.  
 
The results of the moving object detection are shown in Figure 8 and Figure 9. Our 
algorithms found both moving pedestrians and cars successfully. 

5 Detect People As A Special Case 
 

Figure 10: Human detection 

In addition to finding objects and predicting motion, we would like to pay special 
attention to people. We begin with stereo vision, using various commercially-available 
stereo vision systems to give us 3-D information. We segment the scene into 3-D blobs, 
which are directly useful for obstacle detection. Then, for each 3-D blob, we look at the 
size and rough shape: if the size and shape could be a human, we use the outline of the 3-
D blob as an initial segmentation in the original gray-scale image. The region segmented 
from the gray-scale image is then examined to see if its appearance looks like a human. 

 
Figure 8: Vehicle Detection: the points shown by the 
arrow have the shape and motion of a moving car 

 
Figure 9: Pedestrian Detection: the group of 
points designated by the arrow have the shape and 
motion characteristics of a walking pedestrian 



Early versions of this process used a neural net, trained on examples of humans. The 
current version uses a parts-based segmentation, driven by anthropometric models. The 
examples shown in Figure 10 show the body parts that are found in each detected person. 
 

6 Conclusion 
Perception is still an important challenge for outdoor intelligent vehicles, operating in the 
vicinity of other vehicles and people. Solving the perception challenge will take a number 
of innovations: new sensors, new sensor processing, and new fusion systems. We are 
working on each of those areas. 
 
We are motivated in our work both by scientific interest and by the practical challenges 
of building safe, reliable, and dependable vehicles. 
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