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Abstract - The control of autonomous underwater
vehicles has been a challenge to control engineers
due to combined non-linear nature of both the
vehicle itself and the environment in which they
operate. This paper presents an implementation
research on the adaptive controller of an autonomous
underwater vehicle testbed in which the controller
architecture is made using multi-layered neural
networks. The problem considered is that of
designing a controller for an autonomous underwater
vehicle to provide directional control. A flux gate
compass is used to measure the yaw angle and yaw
rate. Directional control is performed by two
thrusters in the horizontal plane. Weight adaptation
of the neural network is achieved by minimizing an
objective function that is weighted sum of tracking
errors and control input rates. According to the
experimental tests on various command trajectories,
we show that when the learning process is kept
active through the control operation, the neural
network adapts to time-varying plant dynamics as
well as disturbance upsets.

Figure 1 : The AUV testbed developed at

1. INTRODUCTION

In past years, an increasing attention has been
devoted to the exploration of oceans and the
utilization of oceanic resources located around the
Taiwan Island. This fact has promoted the
development of unmanned underwater vehicles for
inspection and monitoring of submarine
environment and underwater structures.

Research is currently underway to develop
autonomous underwater vehicles (AUVs) in the
Department of Naval Architecture and Ocean
Engineering of National Taiwan University. This
research represents the first step in the design and
simulation efforts of the AUV system. As an initial
step to develop design capabilities, a testbed vehicle
is constructed for investigation of various AUV
related technologies, such as guidance, navigation,
control, underwater imaging and communications.
The AUV testbed and the internal arrangement of the
testbed is shown in Figure 1 and Figure 2. Table 1
shows its principal particulars.

Figure 2: Internal arrangement of the AUV testbed
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Table 1
Principal particulars of the AUV testbed

Ttems Particulars
Dimensions 2.0m(L) x 1.0m({W) x 0.6m{H)

Weights about 500kg in air ,neutral in water
Operating depth 50m

Max. Speed 4.0 kt

CPU MVME 187 RISC Processor
Memory Capacity 16 MB

Thrusters Horizontal 2x200W

Vertical 1x100W

Control Surface 2x 10W

Trim Weights 2x20W
Lead-acid battery 10 12V x 26AH
Obstacle avoidance sonars
Altimeter

Depthometer

Accelerometers

Rate gyros

Battery
Sensors

A design/simulation package is also under
developing concurrently as part of our AUV
resecarch. The optimal size and position of
stabilizing fins and control surfaces for the
underwater vehicle testbed can be determined using
this computer program. This computer program
predicts performance characteristics from calculated
vehicle hydrodynamic coefficients, and merges with
motion simulation that utilizes the characteristic
coefficients of the design vehicle configuration. The
overall system is described in detail in reference [1].
For missions such as underwater survey or pipe
line inspection, directional control is a basic feature
for the AUV motion control system. Control
problems related to AUVs are very complex, due to
their non-linear dynamics, the presence of
disturbance, and the observation noises.

Neural networks as effective learning controller for
a variety application has been recognized. For an
introduction to the basic concept of neural network
controllers, the reader is referred to [2]. One of the
advantages in using neural networks for the control
applications is that the dynamics of the controlled
system need not be completely known for the design
of the controller. Also the ability of these networks
for adaptation and disturbance rejection as well as
their highly parallel nature of computation makes
them good candidates for many control applications.
In recent years, several control strategies based upon
neural networks have been discussed for the
application in underwater vehicles. Fuji and Ura [3)
presented a self-organizing neural network controller
for the pitch control of AUVs. The controller

consists of a controller network and a forward model
network. A fuzzy controller, called premature
controller, is used as a start-up controller until the
controller network learns the plant dynamics, The
adaptation is achieved according to backward-
propagated signals, which in tum is derived by the
evaluation of the resultant motion estimated by the
forward model network. The control system had been
demonstrated through free-swimming tank tests.
Yuh[4] presented an on-line neural network control
architecture using a three-layered network. Unlike
the approach taken by Fuji an Ura, the error at the
output of the network is estimated from the tracking
error of the vehicle. Simulation results of Yuh's
showed that good trajectory tracking can be achieved
for the vehicle. Also, some results dealing with
issues such as robustness of the controller toward
parameter and environmental disturbances were
presented.  Venugopal et al. [5] described a
modified control scheme of Yuh's network
controller. A gain layer is introduced between the
neural network and the plant that aid the stability of
the control system. They have also shown that the
dynamic response and the tracking performance could
be controlled by adjusting the network learning rate.
Results of simulation studies on the robustness to
disturbances in AUV dynamics were also presented.
In this paper, we describe an implementation work
using the on-line learning neural network controller
for AUV motion control in. the horizontal plane.-
Using the back-propagation [6] as the learning
algorithm, the neural network weight adaptation is
achieved by minimizing an objective function that is
weighted sum of tracking errors and control input
rates. In section 2, we present the control scheme.
Results of simulation and experimental studies on
the AUV testbed vehicle are described in section 3.
In section 4, we discuss implementation issues
regarding neural network based adaptive controllers,

2. CONTROL SYSTEM DESIGN

The dynamics of an AUV is highly non-linear, the
number of parameters that affects the nonlinearities
is large. For example, hydrodynamic coefficients,
thruster dynamics, etc. are usually poorly known.
Besides, due to highly uncertain working
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Figure 3: Control system architecture

environment in the ocean, and the requirement of
control action over large operating range, traditional
model-based design approaches demands enormous
efforts on system modeling and controller design.
As mentioned above, neural networks can be the
suitable controller architecture for AUVs. In this
paper, we use a multi-layered feedforward neural
network as the AUV motion controller. The network
represents a dynamic system with ability to adapt
itself according to a performance index. The
interconnection strength of the network is updated
using the back- propagation algorithm . Figure 3
shows the control system architecture, where ¥V
represents the heading angle in the horizontal
plane. The tracking error at time g is the error
between the vehicle output and its desired value at
the time fx, Because of the time discretization of
the vehicle dynamics, a control command generated
attime 7x by the network controller will affect the
output of the vehicle at time fg4 7. Consequently,
the interconnection weight of the neural network
was updated at time #; based upon information
becoming available at one time step later. The
closed-loop performance of this control system is
demonstrated in the next section through
simulations and experiments.

Figure 4: Heading control of the AUV testbed

The heading control of the AUV testbed is achicved
through the thrust force difference between the right
and left thrusters as shown in Figure 4. In this
figure, T, represents a constant thrust force in
Newtons , and L =Ty + AT, is the command
thrust force to the left thruster, while R = Ty- AT,
is the command thrust force to the right thruster. A
three-layer network with two input nodes, five
hidden layer nodes, and one output node (2x5x1) is

_chosen for the controller, The size of the network is

determined based on results of closed-loop control
simulation of the AUV testbed. Inputs to the

network correspond to e and é, where e denotes the
tracking error between the desired heading vy and

the actual signals of heading, thatis e =y4~y.
Noted that the differentiation of the tracking error é
is filtered before sending to the network controller.
The network then outputs a thrust force difference
command AT to the thrusters.

The training of network was performed in two
stages:

Stage 1: The neural network control architecture is
first trained with an automated teacher that
implements a linear control law. The simulation
package was used as the controller plant at this
stage. For training, we used back-propagation
algorithm. The three-layer network was able to learn
the linear mapping. For example, in Figure 5, an
arbitrarily chosen PD controller was used as a
teacher. Training was terminated after 20,000
iterations. The average squared error at the
termination was less than 0.012. After training, the
network controlled the process and the teacher was
removed. The objective of this stage is to provide
the neural network controller with initial
weightings, and to verify the feasibility of the
control algorithm,
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Figure 5: Network training and
control simulation architecture

Stage 2: The interconnection weights adjusted in
stage 1 using the simulation program were adopted
as initial weighting values. Experimental tests of
the neural network control algorithm were then
conducted with AUV testbed operating in the
swimming pool. In this stage, in order to maximize
the heading tracking performance while minimizing
the costs associated with high control efforts, the
neural network is trained to minimize an objective
function that includes tracking errors, and control
rate requirement:

I(h)= %[a( Valtest) - V’(‘kﬂ))z
+B(AIE)) 1 (o

where o, and S are constants whose values can be

adapted so that they can be used to modify the
characteristic of the neural network controller to
achieve a practical performance/control effort
tradeoff. As will be shown in the next section,
satisfactory tradeoff between tracking performance
and control effort can be achieved with finite values
of o and B since the bandwidth effect of the
actuators is explicitly considered in the training
loop.

3. SIMULATION AND
EXPERIMENTAL RESULTS

The feasibility of the controller architecture is
studied through computer simulations and
experiments. In the simulation tests, the response
of the vehicle is measured by numerical integrating

the differential equation of motion. The neural
network used is 2x5x1, with 21 interconnections.
On-line learning of the controller network is
performormed with 10 updates within each sampling
period. The sampling time used in both simulation
and experiments is 0.05 second, and the leaming rate
used in the back-propagation algorithm is 0.001.
Figure 6 shows the heading response and
commanded AT when the vehicle is subjected to a
step input. The result of the simulation is close to
the one obtained from the experimental test,
indicating that the AUV model utilized for
simulation is adequate.
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Figure 6: Simulated response of the
vehicle to a step heading command

Figure 7 shows the step response under the thruster
parameter variation. In this case, the thrust force
coefficient of the right thruster is increased such that
under the same command, it provides 5 newtons
thrust force more than the left thruster does. As is
observed in the simulation result, a 5 newtons
command bias is generated at the steady state,
indicating the adaptivity of the neural nétwork
controller.
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Figure 7: Simulated response of the vehicle
under thruster parameter variation



Figure 8 shows the results that when training the
neural network to minimize only tracking error led
to high control rate requirements.

Pool tests were performed with the AUV testbed.
Figure 9 and Figure 10 show the vehicle tracking
responses for step and sinosoidal heading commands
respectively. As pointed out earlier, the step
response of the vehicle is very close to the one
obtained in Figure 6. Also in these figures, the
commanded AT and actual thrust force signals
measured directly by the force sensors are shown.
The robustness of the control system towards
constant and sudden disturbances is investigated, and
the results are shown in Figure 11 and Figure 12. It
is observed in the thrust force measurements, that
under external disturbances, the control system is
learning the change of the environment. By
adjusting the controller weights to provide proper
control signals, the desired trajectory is followed
satisfactorily. We investigated the robustness of the
neural network controller to slowly varying changes
in the AUV parameters by experimenting at
different forward speeds. Figure 13 shows the vehicle
performance when constant forward thrust force 7o =
20 newtons( and then 12 newtons ) was applied to
the vehicle. In all cases, with different initial
headings, the controller adapted to changes in
dynamics. The resuits of this case study show that
the neural network control architecture can be used
for the robust control of underwater vehicles.
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Figure 8: Network trained to minimize
only tracking error
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Figure 11: Experimental response when the vehicle
is subjected to a constant external disturbance
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Figure 12: Experimental response when the vehicle
is subjected a sudden external disturbance
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Figure 13: Robustness tests to show that the
controller adapts to slow varying AUV dynamics

4. DISCUSSION

Direct control and indirect control are two different
main strategies generally used in the case of neural
network based adaptive controllers [2]. In the
indirect control strategy, the inverse dynamics of
the plant is identified using a forward model network
at one instant, and based on the identified plant
dynamics, predicted error on the output of the
controller is then used to train the controller network
in the next instant. Along the course of our study,
we found that the network architecture of forward
model for plant dynamics is very problem specific.
It usually requires large network with recurrent
connections. The training of the network dynamics
requires many learning cycles. Therefore, it is not
suitable for implementation on the control of time-
varying systems, or systems operating in the
uncertain environment. On the other hand, in the
direct control strategy, the controller generates the

proper control signal to achieve the desired
performance of the plant. It requires a smaller
network and less computing time. In general, AUV



systems are limited in their computing power and [5}
memory space. It is obvious that for a low level
operation such as the heading control, a simple and
effective control strategy is more suitable for the
practical implementation.

6]
5. CONCLUSIONS

The direct control scheme using a neural network
adaptive controller is shown to be applicable for the
heading control of AUVs. This conclusion is based
on simulation and experimental tests with an AUV

testbed operating in a swimming pool.

In this

work, we have demonstrated the following:

(1) the neural network based on-line control scheme
can cope with unknown vehicle dynamics and can
adapt to slow or fast varying disturbances.

(2) the design of the controller is relatively simple,
the requirement on memory size and computing
speed is low.

Future research is now being directed towards the
depth control of the AUV testbed using a neural
network based controller.
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