Contents

Preface .................................. v

1 Probability ........................................ 1
   1.1 Basic Concepts .................................. 1
   1.2 Properties of Probability ......................... 2
   1.3 Methods of Enumeration ............................ 3
   1.4 Conditional Probability ......................... 4
   1.5 Independent Events ............................... 6
   1.6 Bayes's Theorem ................................ 7

2 Discrete Distributions ......................... 11
   2.1 Random Variables of the Discrete Type ............ 11
   2.2 Mathematical Expectation ......................... 15
   2.3 The Mean, Variance, and Standard Deviation ......... 16
   2.4 Bernoulli Trials and the Binomial Distribution .... 19
   2.5 The Moment-Generating Function ................... 22
   2.6 The Poisson Distribution .......................... 24

3 Continuous Distributions ....................... 27
   3.1 Continuous-Type Data ............................. 27
   3.2 Exploratory Data Analysis ......................... 30
   3.3 Random Variables of the Continuous Type .......... 37
   3.4 The Uniform and Exponential Distributions ........ 45
   3.5 The Gamma and Chi-Square Distributions .......... 48
   3.6 The Normal Distribution .......................... 50
   3.7 Additional Models ............................... 54

4 Bivariate Distributions ......................... 57
   4.1 Bivariate Distributions ........................... 57
   4.2 The Correlation Coefficient ....................... 59
   4.3 Conditional Distributions ......................... 61
   4.4 The Bivariate Normal Distribution ................ 66

5 Distributions of Functions of Random Variables . 69
   5.1 Distributions of Functions of a Random Variable .... 69
   5.2 Transformations of Two Random Variables .......... 71
   5.3 Several Independent Random Variables ............. 74
   5.4 The Moment-Generating Function Technique .......... 77
   5.5 Random Functions Associated with Normal Distributions 79
   5.6 The Central Limit Theorem ......................... 82
   5.7 Approximations for Discrete Distributions .......... 84
6 Estimation

6.1 Point Estimation .............................................. 89
6.2 Confidence Intervals for Means .............................. 92
6.3 Confidence Intervals For Difference of Two Means ....... 93
6.4 Confidence Intervals For Variances ......................... 95
6.5 Confidence Intervals For Proportions ....................... 97
6.6 Sample Size ..................................................... 98
6.7 A Simple Regression Problem ............................... 99
6.8 More Regression ............................................... 105

7 Tests of Statistical Hypotheses ............................... 113

7.1 Tests about Proportions ........................................ 113
7.2 Tests about One Mean and One Variance ................. 115
7.3 Tests of the Equality of Two Means ....................... 118
7.4 Tests for Variances ............................................ 121
7.5 One-Factor Analysis of Variance ............................ 122
7.6 Two-Factor Analysis of Variance ............................ 125
7.7 Tests Concerning Regression and Correlation ............ 126

8 Nonparametric Methods ......................................... 129

8.1 Chi-Square Goodness of Fit Tests .......................... 129
8.2 Contingency Tables ............................................ 133
8.3 Order Statistics .................................................. 134
8.4 Distribution-Free Confidence Intervals for Percentiles . 136
8.5 The Wilcoxon Tests ............................................. 138
8.6 Run Test and Test for Randomness .......................... 142
8.7 Kolmogorov-Smirnov Goodness of Fit Test ............... 145
8.8 Resampling ...................................................... 147

9 Bayesian Methods ................................................. 155

9.1 Subjective Probability ........................................ 155
9.2 Bayesian Estimation .......................................... 156
9.3 More Bayesian Concepts ..................................... 157

10 Some Theory ....................................................... 159

10.1 Sufficient Statistics .......................................... 159
10.2 Power of a Statistical Test .................................. 160
10.3 Best Critical Regions ....................................... 164
10.4 Likelihood Ratio Tests ....................................... 166
10.5 Chebyshev's Inequality and Convergence in Probability . 167
10.6 Limiting Moment-Generating Functions .................. 168
10.7 Asymptotic Distributions of Maximum Likelihood Estimators .... 168

11 Quality Improvement Through Statistical Methods .... 171

11.1 Time Sequences .............................................. 171
11.2 Statistical Quality Control ................................. 174
11.3 General Factorial and $2^k$ Factorial Designs ............ 177
Preface

This solutions manual provides answers for the even-numbered exercises in *Probability and Statistical Inference*, 8th edition, by Robert V. Hogg and Elliot A. Tanis. Complete solutions are given for most of these exercises. You, the instructor, may decide how many of these answers you want to make available to your students. Note that the answers for the odd-numbered exercises are given in the textbook.

All of the figures in this manual were generated using *Maple*, a computer algebra system. Most of the figures were generated and many of the solutions, especially those involving data, were solved using procedures that were written by Zaven Karian from Denison University. We thank him for providing these. These procedures are available free of charge for your use. They are available on the CD-ROM in the textbook. Short descriptions of these procedures are provided on the “Maple Card” on the CD-ROM. Complete descriptions of these procedures are given in *Probability and Statistics: Explorations with MAPLE*, second edition, 1999, written by Zaven Karian and Elliot Tanis, published by Prentice Hall (ISBN 0-13-021536-8).

Our hope is that this solutions manual will be helpful to each of you in your teaching.

If you find an error or wish to make a suggestion, send these to Elliot Tanis at tanis@hope.edu and he will post corrections on his web page, http://www.math.hope.edu/tanis/.

R.V.H.
E.A.T.
Chapter 1

Probability

1.1 Basic Concepts

1.1-2 (a) \( S = \{ \text{bbb, gbb, bgb, bb, bg, gbg, ggb, ggg} \} \);

(b) \( S = \{ \text{female, male} \} \);

(c) \( S = \{ \text{000, 001, 002, 003, \ldots, 999} \} \).

1.1-4 (a) Clutch size: 4 5 6 7 8 9 10 11 12 13 14

Frequency: 3 5 7 27 26 37 8 2 0 1 1

(b) 

\[
\begin{align*}
\text{Frequency} & : 3 5 7 27 26 37 8 2 0 1 1 \\
\end{align*}
\]

(c) 9.
1.1-6 (a) No. Boxes: 4 5 6 7 8 9 10 11 12 13 14 15 16 19 24
Frequency: 10 19 13 8 13 7 9 5 2 4 4 2 2 1 1

(b) $h(x)$

![Histogram](image)

Figure 1.1-6: Number of boxes of cereal

1.1-8 (a) $f(1) = \frac{2}{10}$, $f(2) = \frac{3}{10}$, $f(3) = \frac{3}{10}$, $f(4) = \frac{2}{10}$.

1.1-10 This is an experiment.

1.1-12 (a) $50/204 = 0.245$; $93/329 = 0.283$;
(b) $124/355 = 0.349$; $21/58 = 0.362$;
(c) $174/559 = 0.311$; $114/387 = 0.295$;
(d) Although James’ batting average is higher than Hrbek’s on both grass and artificial turf, Hrbek’s is higher overall. Note the different numbers of at bats on grass and artificial turf and how this affects the batting averages.

1.2 Properties of Probability

1.2-2 Sketch a figure and fill in the probabilities of each of the disjoint sets.

Let $A = \{\text{insure more than one car}\}$, $P(A) = 0.85$.
Let $B = \{\text{insure a sports car}\}$, $P(B) = 0.23$.
Let $C = \{\text{insure exactly one car}\}$, $P(C) = 0.15$.

It is also given that $P(A \cap B) = 0.17$. Since $P(A \cap C) = 0$, it follows that
$P(A \cap B \cap C') = 0.17$. Thus $P(A' \cap B \cap C') = 0.06$ and $P(A' \cap B' \cap C) = 0.09$.

1.2-4 (a) $S = \{\text{HHHH}, \text{HHHT}, \text{HHTH}, \text{HTHH}, \text{THHH}, \text{HHTT}, \text{HTHT}, \text{TTTT}\}$;
(b) (i) $5/16$, (ii) $0$, (iii) $11/16$, (iv) $4/16$, (v) $4/16$, (vi) $9/16$, (vii) $4/16$.

1.2-6 (a) $1/6$;
(b) $P(B) = 1 - P(B') = 1 - P(A) = 5/6$;
(c) $P(A \cup B) = P(S) = 1$. 

1.2-8  (a) \( P(A \cup B) = 0.4 + 0.5 - 0.3 = 0.6; \)
(b) \[ A = (A \cap B') \cup (A \cap B) \]
\[ P(A) = P(A \cap B') + P(A \cap B) \]
\[ 0.4 = P(A \cap B') + 0.3 \]
\[ P(A \cap B) = 0.1; \]
(c) \( P(A' \cup B') = P((A \cap B)') = 1 - P(A \cap B) = 1 - 0.3 = 0.7. \)

1.2-10  Let \( A = \{ \text{lab work done} \}, B = \{ \text{referral to a specialist} \}, \)
\( P(A) = 0.41, P(B) = 0.53, P([A \cup B]') = 0.21. \)
\( P(A \cup B) = P(A) + P(B) - P(A \cap B) \)
\[ 0.79 = 0.41 + 0.53 - P(A \cap B) \]
\[ P(A \cap B) = 0.41 + 0.53 - 0.79 = 0.15. \)

1.2-12  \[ A \cup B \cup C = A \cup (B \cup C) \]
\[ P(A \cup B \cup C) = P(A) + P(B \cup C) - P[(A \cap (B \cup C)) \]
\[ = P(A) + P(B) + P(C) - P(B \cap C) - P[(A \cap B) \cup (A \cap C)] \]
\[ = P(A) + P(B) + P(C) - P(B \cap C) - P(A \cap B) - P(A \cap C) \]
\[ + P(A \cap B \cap C). \]

1.2-14  (a) 1/3;  (b) 2/3;  (c) 0;  (d) 1/2.

1.2-16  (a) \( S = \{(1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (3, 4), (3, 5), (4, 5)\}; \)
(b) (i) 1/10;  (ii) 5/10.

1.2-18  \( P(A) = \frac{2[r - r(\sqrt{3}/2)]}{2r} = 1 - \frac{\sqrt{3}}{2}. \)

1.2-20  Note that the respective probabilities are \( p_0, p_1 = p_0/4, p_2 = p_0/4^2, \ldots \)
\[ \sum_{k=0}^{\infty} \frac{p_0}{4^k} = 1 \]
\[ \frac{p_0}{1 - 1/4} = 1 \]
\[ p_0 = \frac{3}{4} \]
\[ 1 - p_0 - p_1 = 1 - \frac{15}{16} = \frac{1}{16} \]

1.3  Methods of Enumeration

1.3-2  (4)(3)(2) = 24.

1.3-4  (a) (4)(5)(2) = 40;   (b) (2)(2)(2) = 8.

1.3-6  (a) \( 4 \binom{6}{3} = 80; \)
(b) \( 4(2^6) = 256; \)
(c) \( \frac{(4 - 1 + 3)!}{(4 - 1)!3!} = 20. \)

1.3-8  \( _9P_4 = \frac{9!}{5!} = 3024. \)
\[ S = \{ \text{HHH, HHCH, HCHH, CHHH, HHCH, CHHCH, HCCCH, CHCHH, CCHHH, CCC, CCHC, CHCC, HCCC, CCHHC, CHHCC, HCHCC, HHCCH, HHCCC} \} \] so there are 20 possibilities.

\[ 3 \cdot 3 \cdot 2^{12} = 36,864. \]

\[ \begin{align*}
\binom{n-1}{r} + \binom{n-1}{r-1} &= \frac{(n-1)!}{r!(n-1-r)!} + \frac{(n-1)!}{(r-1)!(n-1-r)!} \\
&= \frac{(n-r)(n-1)! + r(n-1)!}{r!(n-r)!} = \frac{n!}{r!(n-r)!} = \binom{n}{r},
\end{align*} \]

\[ 0 = (1-1)^n = \sum_{r=0}^{n} \binom{n}{r} (-1)^r (1)^{n-r} = \sum_{r=0}^{n} (-1)^r \binom{n}{r}. \]

\[ 2^n = (1+1)^n = \sum_{r=0}^{n} \binom{n}{r} (1)^r (1)^{n-r} = \sum_{r=0}^{n} \binom{n}{r}. \]

\[ \begin{align*}
\binom{n}{n_1, n_2, \ldots, n_s} &= \binom{n}{n_1} \binom{n-n_1}{n_2} \binom{n-n_1-n_2}{n_3} \cdots \binom{n-n_1-\cdots-n_{s-1}}{n_s} \\
&= \frac{n!}{n_1!(n-n_1)!} \cdot \frac{(n-n_1)!}{n_2!(n-n_1-n_2)!} \cdots \frac{(n-n_1-\cdots-n_{s-1})!}{n_s!0!} \\
&= \frac{n!}{n_1!n_2!\ldots n_s!}.
\end{align*} \]

\[ \begin{align*}
\text{(a)} & \quad \frac{\binom{19}{3} \binom{52-19}{6}}{\binom{52}{9}} = \frac{102,486}{351,325} = 0.2917; \\
\text{(b)} & \quad \frac{\binom{19}{3} \binom{10}{2} \binom{7}{1} \binom{3}{0} \binom{5}{2} \binom{2}{0}}{\binom{52}{9}} = \frac{7,695}{1,236,664} = 0.00622.
\end{align*} \]

\[ \binom{45}{36} = 886,163,135. \]

1.4 Conditional Probability

\[ \begin{align*}
\text{(a)} & \quad \frac{1041}{1456}; \\
\text{(b)} & \quad \frac{392}{833}; \\
\text{(c)} & \quad \frac{649}{823}; \\
\text{(d)} & \quad \text{The proportion of women who favor a gun law is greater than the proportion of men who favor a gun law.}
\end{align*} \]
1.4-4  (a)  \( P(HH) = \frac{13}{52} \cdot \frac{12}{51} = \frac{1}{17} \);

(b)  \( P(HC) = \frac{13}{52} \cdot \frac{13}{51} = \frac{13}{204} \);

(c)  \( P(\text{Non-Ace Heart, Ace}) + P(\text{Ace of Hearts, Non-Heart Ace}) = \frac{12}{52} \cdot \frac{4}{51} + \frac{1}{52} \cdot \frac{3}{51} = \frac{51}{52} = \frac{1}{17} \).

1.4-6  Let \( A = \{3 \text{ or } 4 \text{ kings}\} \), \( B = \{2, 3, \text{ or } 4 \text{ kings}\} \).

\[
P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{N(A)}{N(B)}
\]

\[
= \frac{\binom{4}{3} \binom{17}{10} + \binom{4}{4} \binom{48}{9}}{\binom{4}{2} \binom{48}{11} + \binom{4}{3} \binom{48}{10} + \binom{4}{4} \binom{48}{9}} = 0.170.
\]

1.4-8  Let \( H = \{\text{died from heart disease}\} \), \( P = \{\text{at least one parent had heart disease}\} \).

\[
P(H | P') = \frac{N(H \cap P')}{N(P')} = \frac{110}{648}.
\]

1.4-10  (a)  \( \frac{3}{20} \cdot \frac{2}{19} \cdot \frac{1}{18} = \frac{1}{1140} \);

(b)  \( \frac{\binom{3}{2} \binom{17}{1}}{\binom{20}{3}} \cdot \frac{1}{17} = \frac{1}{760} \);

(c)  \( \sum_{k=1}^{9} \frac{\binom{3}{2} \binom{17}{2k-2}}{\binom{20}{2k}} \cdot \frac{1}{20 - 2k} = \frac{35}{76} = 0.4605 \).

(d)  Draw second. The probability of winning in \( 1 - 0.4605 = 0.5395 \).

1.4-12  \( \frac{\binom{2}{0} \binom{8}{5}}{\binom{10}{5}} \cdot \frac{2}{5} + \frac{\binom{2}{1} \binom{8}{4}}{\binom{10}{5}} \cdot \frac{1}{5} = \frac{1}{5} \).

1.4-14  (a)  \( P(A) = \frac{52}{52} \cdot \frac{51}{52} \cdot \frac{50}{52} \cdot \frac{49}{52} \cdot \frac{48}{52} \cdot \frac{47}{52} = 8,808,975 / 11,881,376 = 0.74141 \);

(b)  \( P(A') = 1 - P(A) = 0.25859 \).

1.4-16  (a)  It doesn’t matter because \( P(B_1) = \frac{1}{18} \), \( P(B_5) = \frac{1}{18} \), \( P(B_{18}) = \frac{1}{18} \);

(b)  \( P(B) = \frac{2}{18} = \frac{1}{9} \) on each draw.

1.4-18  \( \frac{3}{5} \cdot \frac{5}{8} + \frac{2}{5} \cdot \frac{4}{8} = \frac{23}{40} \).
1.4-20  (a) \( P(A_1) = 30/100; \)
(b) \( P(A_3 \cap B_2) = 9/100; \)
(c) \( P(A_2 \cup B_3) = 41/100 + 28/100 - 9/100 = 60/100; \)
(d) \( P(A_1 | B_2) = 11/41; \)
(e) \( P(B_1 | A_3) = 13/29. \)

1.5  Independent Events

1.5-2  (a) \( P(A \cap B) = P(A)P(B) = (0.3)(0.6) = 0.18; \)
\( P(A \cup B) = P(A) + P(B) - P(A \cap B) \)
\( = 0.3 + 0.6 - 0.18 \)
\( = 0.72. \)

(b) \( P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{0.18}{0.6} = 0. \)

1.5-4 Proof of (b): \( P(A' \cap B) = P(B)P(A'|B) \)
\( = P(B)[1 - P(A|B)] \)
\( = P(B)[1 - P(A)] \)
\( = P(B)P(A'). \)

Proof of (c): \( P(A' \cap B') = P((A \cup B)' \]
\( = 1 - P(A \cup B) \)
\( = 1 - P(A) - P(B) + P(A \cap B) \)
\( = 1 - P(A) - P(B) + P(A)P(B) \)
\( = [1 - P(A)][1 - P(B)] \)
\( = P(A')P(B'). \)

1.5-6  \( P[A \cap (B \cap C)] = P[A \cap B \cap C] \)
\( = P(A)P(B)P(C) \)
\( = P(A)P(B \cap C). \)

\( P[A \cap (B \cup C)] = P[(A \cap B) \cup (A \cap C)] \)
\( = P(A \cap B) + P(A \cap C) - P(A \cap B \cap C) \)
\( = P(A)P(B) + P(A)P(C) - P(A)P(B)P(C) \)
\( = P(A)[P(B) + P(C) - P(B \cap C)] \)
\( = P(A)P(B \cup C). \)

\( P[A' \cap (B \cap C')] = P(A' \cap C' \cap B) \)
\( = P(B)[P(A' \cap C') | B] \)
\( = P(B)[1 - P(A \cup C | B)] \)
\( = P(B)[1 - P(A \cup C)] \)
\( = P(B)P[(A \cup C)'] \)
\( = P(B)P(A' \cap C') \)
\( = P(B)P(A')P(C') \)
\( = P(A')P(B)P(C') \)
\( = P(A')P(B \cap C'). \)

\( P[A' \cap B' \cap C'] = P[(A \cup B \cup C)'] \)
\( = 1 - P(A \cup B \cup C) \)
\( = 1 - P(A) - P(B) - P(C) + P(A)P(B) + P(A)P(C) + P(B)P(C) - P(A)P(B)P(C) \)
\( = [1 - P(A)][1 - P(B)][1 - P(C)] \)
\( = P(A')P(B')P(C'). \)
1.5-8 \( \frac{1}{6} \cdot \frac{2}{6} \cdot \frac{3}{6} + \frac{1}{6} \cdot \frac{4}{6} \cdot \frac{3}{6} + \frac{5}{6} \cdot \frac{2}{6} \cdot \frac{3}{6} = \frac{2}{9} \).

1.5-10 (a) \( \frac{3}{4} \cdot \frac{3}{4} = \frac{9}{16} \);  
(b) \( \frac{1}{4} \cdot \frac{3}{4} + \frac{3}{4} \cdot \frac{2}{4} = \frac{9}{16} \);  
(c) \( \frac{2}{4} \cdot \frac{1}{4} \cdot \frac{4}{4} + \frac{4}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} = \frac{10}{16} \).

1.5-12 (a) \( \left( \frac{1}{2} \right)^3 \left( \frac{1}{2} \right)^2 \);  
(b) \( \left( \frac{1}{2} \right)^3 \left( \frac{1}{2} \right)^2 \);  
(c) \( \left( \frac{1}{2} \right)^3 \left( \frac{1}{2} \right)^2 \);  
(d) \( \frac{5!}{3!2!} \left( \frac{1}{2} \right)^3 \left( \frac{1}{2} \right)^2 \).

1.5-14 (a) \( 1 - (0.4)^3 = 1 - 0.64 = 0.936 \);  
(b) \( 1 - (0.4)^8 = 1 - 0.00065536 = 0.99934464 \).

1.5-16 (a) \( \sum_{k=0}^{\infty} \frac{1}{5} \left( \frac{4}{5} \right)^{2k} = \frac{5}{9} \);  
(b) \( \frac{1}{5} + \frac{4}{5} \cdot \frac{3}{5} + \frac{1}{5} \cdot \frac{4}{5} \cdot \frac{3}{5} \cdot \frac{2}{5} \cdot \frac{1}{5} + \frac{3}{5} \cdot \frac{2}{5} \cdot \frac{1}{5} \cdot \frac{3}{5} \cdot \frac{2}{5} \cdot \frac{1}{5} = \frac{3}{5} \).

1.5-18 (a) 7;  
(b) \( (1/2)^7 \);  
(c) 63;  
(d) No! \( (1/2)^{63} = 1/9,223,372,036,854,775,808 \).

1.5-20  

<table>
<thead>
<tr>
<th>( n )</th>
<th>3</th>
<th>6</th>
<th>9</th>
<th>12</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>0.7037</td>
<td>0.6651</td>
<td>0.6536</td>
<td>0.6480</td>
<td>0.6447</td>
</tr>
<tr>
<td>(b)</td>
<td>0.6667</td>
<td>0.6319</td>
<td>0.6321</td>
<td>0.6321</td>
<td>0.6321</td>
</tr>
</tbody>
</table>

(c) Very little when \( n > 15 \), sampling with replacement.

(d) Convergence is faster when sampling with replacement.

1.6 Bayes’s Theorem

1.6-2 (a) \( P(G) = P(A \cap G) + P(B \cap G) \)  
= \( P(A)P(G \mid A) + P(B)P(G \mid B) \)  
= \( (0.40)(0.85) + (0.60)(0.75) = 0.79 \);  
(b) \( P(A \mid G) = \frac{P(A \cap G)}{P(G)} \)  
= \( \frac{(0.40)(0.85)}{0.79} = 0.43 \).
1.6-4 Let event $B$ denote an accident and let $A_1$ be the event that age of the driver is 16–25. Then
\[
P(A_1 | B) = \frac{(0.1)(0.05)}{(0.1)(0.05) + (0.55)(0.02) + (0.20)(0.03) + (0.15)(0.04)}
\]
\[
= \frac{50}{50 + 110 + 60 + 60} = \frac{50}{280} = 0.179.
\]

1.6-6 Let $B$ be the event that the policyholder dies. Let $A_1, A_2, A_3$ be the events that the deceased is standard, preferred and ultra-preferred, respectively. Then
\[
P(A_1 | B) = \frac{(0.60)(0.01)}{(0.60)(0.01) + (0.30)(0.008) + (0.10)(0.007)}
\]
\[
= \frac{60}{60 + 24 + 7} = \frac{60}{91} = 0.659;
\]
\[
P(A_2 | B) = \frac{24}{91} = 0.264;
\]
\[
P(A_3 | B) = \frac{7}{91} = 0.077.
\]

1.6-8 Let $A$ be the event that the DVD player is under warranty.
\[
P(B_1 | A) = \frac{(0.40)(0.10)}{(0.40)(0.10) + (0.30)(0.05) + (0.20)(0.03) + (0.10)(0.02)}
\]
\[
= \frac{40}{40 + 15 + 6 + 2} = \frac{40}{63} = 0.635;
\]
\[
P(B_2 | A) = \frac{15}{63} = 0.238;
\]
\[
P(B_3 | A) = \frac{6}{63} = 0.095;
\]
\[
P(B_4 | A) = \frac{2}{63} = 0.032.
\]

1.6-10 (a) $P(AD) = (0.02)(0.92) + (0.98)(0.05) = 0.0184 + 0.0490 = 0.0674$;
(b) $P(N | AD) = \frac{0.0490}{0.0674} = 0.727; P(A | AD) = \frac{0.0184}{0.0674} = 0.273$;
(c) $P(N | ND) = \frac{(0.98)(0.95)}{(0.02)(0.08) + (0.98)(0.95)} = \frac{9310}{16 + 9310} = 0.998; P(A | ND) = 0.002$.
(d) Yes, particularly those in part (b).

1.6-12 Let $D = \{\text{has the disease}\}$, $DP = \{\text{detects presence of disease}\}$. Then
\[
P(D | DP) = \frac{P(D \cap DP)}{P(DP)}
\]
\[
= \frac{P(D) \cdot P(DP | D)}{P(D) \cdot P(DP | D) + P(D') \cdot P(DP | D')}
\]
\[
= \frac{(0.005)(0.90)}{(0.005)(0.90) + (0.995)(0.02)}
\]
\[
= \frac{0.0045}{0.0045 + 0.199} = \frac{0.0045}{0.244} = 0.1844.
\]
1.6-14 Let $D = \{\text{defective roll}\}$ Then

$$P(I \mid D) = \frac{P(I \cap D)}{P(D)}$$

$$= \frac{P(I) \cdot P(D \mid I)}{P(I) \cdot P(D \mid I) + P(II) \cdot P(D \mid II)}$$

$$= \frac{(0.60)(0.03)}{(0.60)(0.03) + (0.40)(0.01)}$$

$$= \frac{0.018}{0.018 + 0.004} = \frac{0.018}{0.022} = 0.818.$$
Chapter 2

Discrete Distributions

2.1 Random Variables of the Discrete Type

2.1-2 (a) \( f(x) = \begin{cases} 
0.6, & x = 1, \\
0.3, & x = 5, \\
0.1, & x = 10,
\end{cases} \)

(b) \( N(0)/150 = 11/150 = 0.073; \quad N(5)/150 = 13/150 = 0.087; \)
\( N(1)/150 = 14/150 = 0.093; \quad N(6)/150 = 22/150 = 0.147; \)
\( N(2)/150 = 13/150 = 0.087; \quad N(7)/150 = 16/150 = 0.107; \)
\( N(3)/150 = 12/150 = 0.080; \quad N(8)/150 = 18/150 = 0.120; \)
\( N(4)/150 = 16/150 = 0.107; \quad N(9)/150 = 15/150 = 0.100. \)

Figure 2.1-2: A probability histogram

2.1-4 (a) \( f(x) = \frac{1}{10}, \ x = 0, 1, 2, \cdots, 10; \)

(b) \( N(0)/150 = 11/150 = 0.073; \quad N(5)/150 = 13/150 = 0.087; \)
\( N(1)/150 = 14/150 = 0.093; \quad N(6)/150 = 22/150 = 0.147; \)
\( N(2)/150 = 13/150 = 0.087; \quad N(7)/150 = 16/150 = 0.107; \)
\( N(3)/150 = 12/150 = 0.080; \quad N(8)/150 = 18/150 = 0.120; \)
\( N(4)/150 = 16/150 = 0.107; \quad N(9)/150 = 15/150 = 0.100. \)
2.1-6 (a) \( f(x) = \frac{6 - |7 - x|}{36}, \) \( x = 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12. \)

(b) 

Figure 2.1-6: Probability histogram for the sum of a pair of dice
2.1-8 (a) The space of $W$ is $S = \{0, 1, 2, 3, 4, 5, 6, 7\}$.

\[
P(W = 0) = P(X = 0, Y = 0) = \frac{1}{2} \cdot \frac{1}{4} = \frac{1}{8},\quad \text{assuming independence.}
\]

\[
P(W = 1) = P(X = 0, Y = 1) = \frac{1}{2} \cdot \frac{1}{4} = \frac{1}{8},
\]

\[
P(W = 2) = P(X = 2, Y = 0) = \frac{1}{2} \cdot \frac{1}{4} = \frac{1}{8},
\]

\[
P(W = 3) = P(X = 2, Y = 1) = \frac{1}{2} \cdot \frac{1}{4} = \frac{1}{8},
\]

\[
P(W = 4) = P(X = 0, Y = 4) = \frac{1}{2} \cdot \frac{1}{4} = \frac{1}{8},
\]

\[
P(W = 5) = P(X = 0, Y = 5) = \frac{1}{2} \cdot \frac{1}{4} = \frac{1}{8},
\]

\[
P(W = 6) = P(X = 2, Y = 4) = \frac{1}{2} \cdot \frac{1}{4} = \frac{1}{8},
\]

\[
P(W = 7) = P(X = 2, Y = 5) = \frac{1}{2} \cdot \frac{1}{4} = \frac{1}{8}.
\]

That is, $f(w) = P(W = w) = \frac{1}{8}, \quad w \in S$.

(b) 

![Figure 2.1-8: Probability histogram of sum of two special dice](image)

2.1-10 (a) \[
\begin{aligned}
\binom{3}{1} \binom{47}{9} & = \frac{39}{98}, \\
\binom{50}{10} & = 221 \cdot 245.
\end{aligned}
\]
2.1-12 \[ OC(0.04) = \frac{\binom{1}{0}\binom{24}{5}}{\binom{25}{5}} + \frac{\binom{1}{1}\binom{24}{4}}{\binom{25}{5}} = 1.000; \]

\[ OC(0.08) = \frac{\binom{2}{0}\binom{23}{5}}{\binom{25}{5}} + \frac{\binom{2}{1}\binom{23}{4}}{\binom{25}{5}} = 0.967; \]

\[ OC(0.12) = \frac{\binom{3}{0}\binom{22}{5}}{\binom{25}{5}} + \frac{\binom{3}{1}\binom{22}{4}}{\binom{25}{5}} = 0.909; \]

\[ OC(0.16) = \frac{\binom{4}{0}\binom{21}{5}}{\binom{25}{5}} + \frac{\binom{4}{1}\binom{21}{4}}{\binom{25}{5}} = 0.834. \]

2.1-14 \[ P(X \geq 1) = 1 - P(X = 0) = 1 - \frac{\binom{3}{0}\binom{17}{5}}{\binom{20}{5}} = 1 - \frac{91}{228} = \frac{137}{228} = 0.60. \]

2.1-16 (a) Let \( Y \) equal the number of \( H \) chips that are selected. Then
\[ X = |Y - (10 - Y)| = |2Y - 10| \]
and the p.m.f. of \( Y \) is
\[ g(y) = \frac{\binom{10}{y}\binom{10}{10-y}}{\binom{20}{10}}, \quad y = 0, 1, \ldots, 10. \]

The p.m.f. of \( X \) is as follows:

<table>
<thead>
<tr>
<th>( f(0) = g(5) )</th>
<th>( f(2) = 2g(6) )</th>
<th>( f(4) = 2g(7) )</th>
<th>( f(6) = 2g(8) )</th>
<th>( f(8) = 2g(9) )</th>
<th>( f(10) = 2g(10) )</th>
</tr>
</thead>
<tbody>
<tr>
<td>( \frac{1}{184,756} )</td>
<td>( \frac{2025}{92,378} )</td>
<td>( \frac{22,050}{46,189} )</td>
<td>( \frac{22,050}{46,189} )</td>
<td>( \frac{2025}{92,378} )</td>
<td>( \frac{1}{92,378} )</td>
</tr>
</tbody>
</table>

(b) The mode is equal to 2.

2.1-18 (a) \( P(2, 1, 6, 10) \) means that 2 is in position 1 so 1 cannot be selected. Thus
\[ P(2, 1, 6, 10) = \frac{\binom{1}{0}\binom{1}{1}\binom{8}{5}}{\binom{10}{6}} = \frac{56}{210} = \frac{4}{15}; \]

(b) \[ P(i, r, k, n) = \frac{\binom{i-1}{r-1}\binom{1}{1}\binom{n-i}{k-r}}{\binom{n}{k}}. \]
2.2 Mathematical Expectation

2.2-2 \[ E(X) = (-1) \left( \frac{4}{9} \right) + (0) \left( \frac{1}{9} \right) + (1) \left( \frac{4}{9} \right) = 0; \]
\[ E(X^2) = (-1)^2 \left( \frac{4}{9} \right) + (0)^2 \left( \frac{1}{9} \right) + (1)^2 \left( \frac{4}{9} \right) = \frac{8}{9}; \]
\[ E(3X^2 - 2X + 4) = 3 \left( \frac{8}{9} \right) - 2(0) + 4 = \frac{20}{3}. \]

2.2-4 \[ E(X) = \$499(0.001) - \$1(0.999) = -\$0.50. \]

2.2-6 \[ 1 = \sum_{x=0}^{6} f(x) = \frac{9}{10} + c \left( \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} \right) \]
\[ c = \frac{2}{49}; \]
\[ E(\text{Payment}) = \frac{2}{49} \left( 1 \cdot \frac{1}{2} + 2 \cdot \frac{1}{3} + 3 \cdot \frac{1}{4} + 4 \cdot \frac{1}{5} + 5 \cdot \frac{1}{6} \right) = \frac{71}{490} \text{ units.} \]

2.2-8 Note that \[ \sum_{x=1}^{\infty} \frac{6}{\pi^2 x^2} = \frac{6}{\pi^2} \sum_{x=1}^{\infty} \frac{1}{x^2} = \frac{6 \pi^2}{6} = 1, \]
so this is a p.d.f.
\[ E(X) = \sum_{x=1}^{\infty} x \frac{6}{\pi^2 x^2} = \frac{6}{\pi^2} \sum_{x=1}^{\infty} \frac{1}{x} \]
and it is well known that the sum of this harmonic series is not finite.

2.2-10 \[ E(|X - c|) = \frac{1}{7} \sum_{x \in S} |x - c|, \text{ where } S = \{1, 2, 3, 5, 15, 25, 50\}. \]
When \( c = 5 \),
\[ E(|X - 5|) = \frac{1}{7} \left[ (5 - 1) + (5 - 2) + (5 - 3) + (5 - 5) + (15 - 5) + (25 - 5) + (50 - 5) \right]. \]
If \( c \) is either increased or decreased by 1, this expectation is increased by 1/7. Thus \( b = E(X) = \mu \), the mean, minimizes \( E[(X - b)^2] \). You could also let \( h(c) = E(|X - c|) \) and show that \( h'(c) = 0 \) when \( c = 5 \).

2.2-12 \[ (1) \cdot \frac{15}{36} + (-1) \cdot \frac{21}{36} = \frac{-6}{36} = \frac{-1}{6}; \]
\[ (1) \cdot \frac{15}{36} + (-1) \cdot \frac{21}{36} = \frac{-6}{36} = \frac{-1}{6}; \]
\[ (4) \cdot \frac{6}{36} + (-1) \cdot \frac{30}{36} = \frac{-6}{36} = \frac{-1}{6}. \]

2.2-14 (a) The average class size is \( \frac{(16)(25) + (3)(100) + (1)(300)}{20} = 50; \)
(b) \[ f(x) = \begin{cases} 0.4, & x = 25, \\ 0.3, & x = 100, \\ 0.3, & x = 300, \end{cases} \]
(c) \[ E(X) = 25(0.4) + 100(0.3) + 300(0.3) = 130. \]
2.3 The Mean, Variance, and Standard Deviation

2.3-2 (a) \[ \mu = E(X) \]
\[ = \sum_{x=1}^{3} x \frac{3!}{x!(3-x)!} \left( \frac{1}{4} \right)^x \left( \frac{3}{4} \right)^{3-x} \]
\[ = 3 \left( \frac{1}{4} \right) \sum_{k=0}^{2} \frac{2!}{k!(2-k)!} \left( \frac{1}{4} \right)^k \left( \frac{3}{4} \right)^{2-k} \]
\[ = 3 \left( \frac{1}{4} \right) \left( \frac{1}{4} + 3 \right)^2 = \frac{3}{4}; \]
\[ E[X(X-1)] = \sum_{x=2}^{3} x(x-1) \frac{3!}{x!(3-x)!} \left( \frac{1}{4} \right)^x \left( \frac{3}{4} \right)^{3-x} \]
\[ = 2(3) \left( \frac{1}{4} \right)^2 \left( \frac{3}{4} \right)^3 + 6 \left( \frac{1}{4} \right)^3 \]
\[ = 6 \left( \frac{1}{4} \right)^2 = 2 \left( \frac{1}{4} \right) \left( \frac{3}{4} \right) = \frac{3}{4}; \]
\[ \sigma^2 = E[X(X-1)] + E(X) - \mu^2 \]
\[ = (2) \left( \frac{3}{4} \right) \left( \frac{1}{4} \right) + \left( \frac{3}{4} \right) - \left( \frac{3}{4} \right)^2 \]
\[ = (2) \left( \frac{3}{4} \right) \left( \frac{1}{4} \right) + \left( \frac{3}{4} \right) \left( \frac{1}{4} \right) = 3 \left( \frac{1}{4} \right) \left( \frac{3}{4} \right); \]

(b) \[ \mu = E(X) \]
\[ = \sum_{x=1}^{4} x \frac{4!}{x!(4-x)!} \left( \frac{1}{2} \right)^x \left( \frac{1}{2} \right)^{4-x} \]
\[ = 4 \left( \frac{1}{2} \right)^3 \sum_{k=0}^{3} \frac{3!}{k!(3-k)!} \left( \frac{1}{2} \right)^k \left( \frac{1}{2} \right)^{3-k} \]
\[ = 4 \left( \frac{1}{2} \right)^3 \left( \frac{1}{2} + \frac{1}{2} \right)^3 = 2; \]
\[ E[X(X-1)] = \sum_{x=2}^{4} x(x-1) \frac{4!}{x!(4-x)!} \left( \frac{1}{2} \right)^x \left( \frac{1}{2} \right)^{4-x} \]
\[ = 2(6) \left( \frac{1}{2} \right)^4 + (6)(4) \left( \frac{1}{2} \right)^4 + (12) \left( \frac{1}{2} \right)^4 \]
\[ = 48 \left( \frac{1}{2} \right)^4 = 12 \left( \frac{1}{2} \right)^2 ; \]
\[ \sigma^2 = (12) \left( \frac{1}{2} \right)^2 + 4 - \left( \frac{4}{2} \right)^2 = 1. \]

2.3-4 \[ E[(X - \mu)/\sigma] = (1/\sigma) |E(X) - \mu| = (1/\sigma)(\mu - \mu) = 0; \]
\[ E\{(X - \mu)/\sigma^2\} = (1/\sigma^2) E[(X - \mu)^2] = (1/\sigma^2)(\sigma^2) = 1. \]
2.3-6 \( f(1) = \frac{3}{8}, f(2) = \frac{2}{8}, f(3) = \frac{3}{8} \)

\[ \mu = 1 \cdot \frac{3}{8} + 2 \cdot \frac{2}{8} + 3 \cdot \frac{3}{8} = 2, \]

\[ \sigma^2 = 1^2 \cdot \frac{3}{8} + 2^2 \cdot \frac{2}{8} + 3^2 \cdot \frac{3}{8} - 2^2 = \frac{3}{4}. \]

2.3-8 (a) \( \bar{x} = \frac{4}{3} = 1.333; \)

(b) \( s^2 = \frac{88}{69} = 1.275. \)

2.3-10 (a) \( [3, 19, 16, 9]; \)

(b) \( \bar{x} = \frac{125}{47} = 2.66, \ s = 0.87; \)

(c)

Figure 2.3-10: Number of pets

2.3-12 \( \bar{x} = \frac{409}{50} = 8.18. \)

2.3-14 (a) \( f(x) = P(X = x) = \binom{6}{x} \frac{43}{6-x} \left( \frac{49}{6} \right), \quad x = 0, 1, 2, 3, 4, 5, 6; \)

(b) \( \mu_x = \sum_{x=0}^{6} xf(x) = \frac{36}{49} = 0.7347, \)

\[ \sigma^2_x = \sum_{x=0}^{6} (x - \mu)^2 f(x) = \frac{5,547}{9,604} = 0.5776; \]

\[ \sigma_x = \frac{43}{98} \sqrt{3} = 0.7600; \]

(c) \( f(0) = \frac{435,461}{998,844} > \frac{412,542}{998,844} = f(1); \ X = 0 \) is most likely to occur.
(d) The numbers are reasonable because

\[
(25,000,000)f(6) = 1.79; \]
\[
(25,000,000)f(5) = 461.25; \]
\[
(25,000,000)f(4) = 24,215.49; \]

(e) The respective expected values, \((138)f(x)\), for \(x = 0, 1, 2, 3\), are 60.16, 57.00, 18.27, and 2.44, so the results are reasonable. See Figure 2.3-14 for a comparison of the theoretical probability histogram and the histogram of the data.

![Empirical (shaded) and theoretical histograms for LOTTO](image)

Figure 2.3-14: Empirical (shaded) and theoretical histograms for LOTTO

2.3-16 (a) Out of the 75 numbers, first select \(x - 1\) of which 23 are selected out of the 24 good numbers on your card and the remaining \(x - 1 - 23\) are selected out of the 51 bad numbers. There is now one good number to be selected out of the remaining 75 \(- (x - 1)\).

(b) The mode is 75.

(c) \(\mu = \frac{1824}{25} = 72.96\).

(d) \(E[X(X + 1)] = \frac{70.224}{13} = 5.401.846154\).

(e) \(\sigma^2 = \frac{46,512}{8,125} = 5.724554; \ \sigma = 2.3926\).

(f) (i) \(\bar{x} = 72.78\), (ii) \(s^2 = 8.7187879\), (iii) \(s = 2.9528\), (iv) 5378.34.
(g) $f(x), h(x)$

Figure 2.3-16: Bingo “cover-up” comparisons

2.3-18 (a) $P(X \geq 1) = \frac{2^1}{3^1} = \frac{2}{3}$;

(b) $\sum_{k=1}^{5} P(X \geq k) = P(X = 1) + 2P(X = 2) + \cdots + 5P(X = 5) = \mu$;

(c) $\mu = \frac{5.168}{3.405} = 1.49149$;

(d) In the limit, $\mu = \frac{\pi}{2}$.

2.4 Bernoulli Trials and the Binomial Distribution

2.4-2 $f(-1) = \frac{11}{18}$, $f(1) = \frac{7}{18};$

$\mu = (-1)\frac{11}{18} + (1)\frac{7}{18} = -\frac{4}{18};$

$\sigma^2 = \left(-1 + \frac{4}{18}\right)^2\left(\frac{11}{18}\right) + \left(1 + \frac{4}{18}\right)^2\left(\frac{7}{18}\right) = \frac{77}{81}.$

2.4-4 (a) $P(X \leq 5) = 0.6652$;

(b) $P(X \geq 6) = 1 - P(X \leq 5) = 0.3348$;

(c) $P(X \leq 7) - P(X \leq 6) = 0.9427 - 0.8418 = 0.1009$;

(d) $\mu = (12)(0.40) = 4.8$, $\sigma^2 = (12)(0.40)(0.60) = 2.88$, $\sigma = \sqrt{2.88} = 1.697$.

2.4-6 (a) $X$ is $b(7, 0.15)$;

(b) (i) $P(X \geq 2) = 1 - P(X \leq 1) = 1 - 0.7166 = 0.2834$;

(ii) $P(X = 1) = P(X \leq 1) - P(X \leq 0) = 0.7166 - 0.3206 = 0.3960$;

(iii) $P(X \leq 3) = 0.9879.$
2.4-8 (a) \( P(X \geq 10) = P(15 - X \leq 5) = 0.5643; \)
(b) \( P(X \leq 10) = P(15 - X \geq 5) = 1 - P(15 - X \leq 4) = 1 - 0.3519 = 0.6481; \)
(c) \( P(X = 10) = P(X \geq 10) - P(X \geq 11) \)
\[ = P(15 - X \leq 5) - P(15 - X \leq 4) = 0.5643 - 0.3519 = 0.2124; \]
(d) \( X \) is \( b(15, 0.65), 15 - X \) is \( b(15, 0.35); \)
(e) \( \mu = (15)(0.65) = 9.75, \sigma^2 = (15)(0.65)(0.35) = 3.4125; \sigma = \sqrt{3.4125} = 1.847. \)

2.4-10 (a) \( 1 - 0.01^4 = 0.99999999; \)  (b) \( 0.99^4 = 0.960596. \)

2.4-12 (a) \( X \) is \( b(8, 0.90); \)
(b) (i) \( P(X = 8) = P(8 - X = 0) = 0.4305; \)
(ii) \( P(X \leq 6) = P(8 - X \geq 2) \)
\[ = 1 - P(8 - X \leq 1) = 1 - 0.8131 = 0.1869; \]
(iii) \( P(X \geq 6) = P(8 - X \leq 2) = 0.9619. \)

2.4-14 (a)
\[
f(x) = \begin{cases} 
125/216, & x = -1, \\
75/216, & x = 1, \\
15/216, & x = 2, \\
1/216, & x = 3;
\end{cases}
\]
(b) \( \mu = (-1) \cdot \frac{125}{216} + (1) \cdot \frac{75}{216} + (2) \cdot \frac{15}{216} + (3) \cdot \frac{1}{216} = -\frac{17}{216}; \)
\( \sigma^2 = E(X^2) - \mu^2 = \frac{269}{216} - \left(-\frac{17}{216}\right)^2 = 1.2392; \)
\( \sigma = 1.11; \)
(c) See Figure 2.4-14.
(d) \( \bar{x} = \frac{-1}{100} = -0.01; \)
\( s^2 = \frac{100(129) - (-1)^2}{100(99)} = 1.3029; \)
\( s = 1.14. \)
2.4-16 Let $X$ equal the number of winning tickets when $n$ tickets are purchased. Then

$$P(X \geq 1) = 1 - P(X = 0)$$

$$= 1 - \left( \frac{9}{10} \right)^n.$$ 

(a) $1 - (0.9)^n = 0.50$

$(0.9)^n = 0.50$

$n \ln 0.9 = \ln 0.5$

$n = \frac{\ln 0.5}{\ln 0.9} = 6.58$

so $n = 7$.

(b) $1 - (0.9)^n = 0.95$

$(0.9)^n = 0.05$

$n = \frac{\ln 0.05}{\ln 0.9} = 28.43$

so $n = 29$.

2.4-18 \[
\frac{(0.1)(1 - 0.95^5)}{(0.4)(1 - 0.97^5) + (0.5)(1 - 0.98^5) + (0.1)(1 - 0.95^5)} = 0.178.
\]

2.4-20 It is given that $X$ is $b(10, 0.10)$. We are to find $M$ so that

$P(1000X \leq M) \geq 0.99$ or $P(X \leq M/1000) \geq 0.99$. From Appendix Table II, $P(X \leq 4) = 0.9984 > 0.99$. Thus $M/1000 = 4$ or $M = 4000$ dollars.

2.4-22 $X$ is $b(5, 0.05)$. The expected number of tests is

$1 P(X = 0) + 6 P(X > 0) = 1 (0.7738) + 6 (1 - 0.7738) = 2.131$. 

2.5 The Moment-Generating Function

2.5-2 (a) (i) \( b(5, 0.7) \); (ii) \( \mu = 3.5, \sigma^2 = 1.05 \); (iii) 0.1607;
(b) (i) geometric, \( p = 0.3 \); (ii) \( \mu = 10/3, \sigma^2 = 70/9 \); (iii) 0.51;
(c) (i) Bernoulli, \( p = 0.55 \); (ii) \( \mu = 0.55, \sigma^2 = 0.2475 \); (iii) 0.55;
(d) (ii) \( \mu = 2.1, \sigma^2 = 0.89 \); (iii) 0.7;
(e) (i) negative binomial, \( p = 0.6, r = 2 \); (ii) \( 10/3, \sigma^2 = 20/9 \); (iii) 0.36;
(f) (i) discrete uniform on 1, 2, \ldots, 10; (ii) 5.5, 8.25; (iii) 0.2.

2.5-4 (a) \( f(x) = \left( \frac{364}{365} \right)^{x-1} \left( \frac{1}{365} \right), \quad x = 1, 2, 3, \ldots \)
(b) \( \mu = \frac{1}{\left( \frac{364}{365} \right)} = 365, \quad \sigma^2 = \frac{364}{\left( \frac{365}{365} \right)^2} = 132,860, \quad \sigma = 364.500 \);
(c) \( P(X > 400) = \left( \frac{364}{365} \right)^{400} = 0.3337, \quad P(X < 300) = 1 - \left( \frac{364}{365} \right)^{299} = 0.5597. \)

2.5-6 \( P(X \geq 100) = P(X > 99) = (0.99)^{99} = 0.3697. \)

2.5-8 \( \left( \frac{10 - 1}{5 - 1} \right) \left( \frac{1}{2} \right)^5 \left( \frac{1}{2} \right)^5 = \frac{126}{1024} = \frac{63}{512}. \)

2.5-10 (a) Negative binomial with \( r = 10, p = 0.6 \) so
\( \mu = \frac{10}{0.60} = 16.667, \quad \sigma^2 = \frac{10(0.40)}{(0.60)^2} = 11.111, \quad \sigma = 3.333; \)
(b) \( P(X = 16) = \binom{15}{9} (0.60)^{10}(0.40)^6 = 0.1240. \)

2.5-12 \( P(X > k + j \mid X > k) = \frac{P(X > k + j)}{P(X > k)} = \frac{q^{k+j}}{q^k} = q^j = P(X > j). \)

2.5-14 (b) \( \sum_{x=2}^{\infty} f(x) = \sum_{x=2}^{\infty} \frac{1}{\sqrt{5}} \left[ \left( \frac{1 + \sqrt{5}}{2} \right)^{x-1} - \left( \frac{1 - \sqrt{5}}{2} \right)^{x-1} \right] \left( \frac{1}{2^x} \right) \)
\( = \frac{2}{\sqrt{5}(1 + \sqrt{5})} \sum_{x=2}^{\infty} \frac{(1 + \sqrt{5})^x}{4^x} - \frac{2}{\sqrt{5}(1 - \sqrt{5})} \sum_{x=2}^{\infty} \frac{(1 - \sqrt{5})^x}{4^x} \)
\( = 1; \)
\(E(X) = \sum_{x=2}^{\infty} \frac{x}{\sqrt{5}} \left[ \left( \frac{1 + \sqrt{5}}{2} \right)^{x-1} - \left( \frac{1 - \sqrt{5}}{2} \right)^{x-1} \right] \left( \frac{1}{2^{x}} \right)\)

\(= \frac{1}{2\sqrt{5}} \sum_{x=1}^{\infty} x \left( \frac{1 + \sqrt{5}}{4} \right)^{x-1} - x \left( \frac{1 - \sqrt{5}}{4} \right)^{x-1} \right] \]

\(= \frac{1}{2\sqrt{5}} \left[ \frac{1 + \sqrt{5}}{4} \sum_{x=2}^{\infty} x(x-1) \left( \frac{1 + \sqrt{5}}{4} \right)^{x-2} \right] - \frac{1 - \sqrt{5}}{4} \sum_{x=2}^{\infty} x(x-1) \left( \frac{1 - \sqrt{5}}{4} \right)^{x-2} \right] \]

\(= \frac{1}{2\sqrt{5}} \left[ 2 \left( \frac{1 + \sqrt{5}}{4} \right)^{5} - 2 \left( \frac{1 - \sqrt{5}}{4} \right)^{5} \right] \]

\(\sigma^2 = E[X(X-1)] + E(X) - \mu^2\)

\(= 52 + 6 - 36 = 22,\)

\(\sigma = \sqrt{22} = 4.690.\)

(e) (i) \(P(X \leq 3) = \frac{1}{4} + \frac{1}{8} = \frac{3}{8},\)

(ii) \(P(X \leq 5) = 1 - P(X \leq 4) = 1 - \frac{1}{4} - \frac{1}{8} - \frac{1}{8} = \frac{1}{2},\)

(iii) \(P(X = 3) = \frac{1}{8}.\)

(f) A simulation question.

2.5-16 Let “being missed” be a success and let \(X\) equal the number of trials until the first success. Then \(p = 0.01.\)

\(P(X \leq 50) = 1 - 0.99^{50} = 1 - 0.605 = 0.395.\)

2.5-18 \(M(t) = 1 + \frac{5t}{1!} + \frac{5t^2}{2!} + \frac{5t^3}{3!} + \cdots = e^{5t},\)

\(f(x) = 1, \quad x = 5.\)
2.5-20 (a) \[ R(t) = \ln(1 - p + pe^t), \]
\[
R'(t) = \left[ \frac{pe^t}{1 - p + pe^t} \right]_{t=0} = p,
\]
\[
R''(t) = \left[ \frac{(1 - p + pe^t)(pe^t) - (pe^t)(pe^t)}{(1 - p + pe^t)^2} \right]_{t=0} = p(1 - p);
\]
(b) \[ R(t) = n \ln(1 - p + pe^t), \]
\[
R'(t) = \left[ \frac{npe^t}{1 - p + pe^t} \right]_{t=0} = np,
\]
\[
R''(t) = n \left[ \frac{1 - p + pe^t}{(1 - p + pe^t)^2} \right]_{t=0} = np(1 - p);
\]
(c) \[ R(t) = \ln p + t - \ln[1 - (1 - p)e^t], \]
\[
R'(t) = \left[ 1 + \frac{(1 - p)e^t}{1 - (1 - p)e^t} \right]_{t=0} = 1 + \frac{1 - p}{p} = \frac{1}{p},
\]
\[
R''(t) = \left[ (1 - p)e^t - (1 - p)e^t \right]_{t=0} = \frac{1 - p}{p};
\]
(d) \[ R(t) = r \ln p + t - \ln[1 - (1 - p)e^t], \]
\[
R'(t) = \left[ \frac{1}{1 - (1 - p)e^t} \right]_{t=0} = \frac{r}{p},
\]
\[
R''(t) = \left[ (1 - p)e^t - 2(1 - p)e^t \right]_{t=0} = \frac{r(1 - p)}{p^2}.
\]

2.5-22 (0.7)(0.7)(0.3) = 0.147.

2.6 The Poisson Distribution

2.6-2 \( \lambda = \mu = \sigma^2 = 3 \) so \( P(X = 2) = 0.423 - 0.199 = 0.224. \)

2.6-4 \[ 3 \frac{\lambda^1 e^{-\lambda}}{1!} = \frac{\lambda^2 e^{-\lambda}}{2!} \]
\[ e^{-\lambda} \lambda(\lambda - 6) = 0 \]
\[ \lambda = 6 \]
Thus \( P(X = 4) = 0.285 - 0.151 = 0.134. \)

2.6-6 \( \lambda = (1)(50/100) = 0.5, \) so \( P(X = 0) = e^{-0.5}/0! = 0.607. \)

2.6-8 \( np = 1000(0.005) = 5; \)
\( \) (a) \( P(X \leq 1) \approx 0.040; \)
\( \) (b) \( P(X = 4, 5, 6) = P(X \leq 6) - P(X \leq 3) \approx 0.762 - 0.265 = 0.497. \)

2.6-10 \( \sigma = \sqrt{9} = 3, \)
\[ P(3 < X < 15) = P(X \leq 14) - P(X \leq 3) = 0.959 - 0.021 = 0.938. \]
2.6-12  (a)  \([17, 47, 63, 49, 28, 21, 11, 1]\);
   (b)  \(\bar{x} = 303/100 = 3.03, \quad s^2 = 4.141/1, 300 = 3.193, \) yes;
   (c)  

\[ f(x), h(x) \]

\begin{align*}
  &f(x) \quad \text{Bar} \quad \text{Histo} \\
  &0.25 \quad \text{0.20} \quad \text{0.15} \quad \text{0.10} \quad \text{0.05} \\
  &1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \\
\end{align*}

Figure 2.6-12: Background radiation

(d) The fit is very good and the Poisson distribution seems to provide an excellent probability model.

2.6-14  (a)  

\[ f(x), h(x) \]

\begin{align*}
  &f(x) \quad \text{Bar} \quad \text{Histo} \\
  &0.25 \quad \text{0.20} \quad \text{0.15} \quad \text{0.10} \quad \text{0.05} \\
  &1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \quad 11 \\
\end{align*}

Figure 2.6-14: Green peanut m&m’s

(b) The fit is quite good. Also \(\bar{x} = 4.956\) and \(s^2 = 4.134\) are close to each other.
**2.6-16** \[ OC(p) = P(X \leq 3) \approx \sum_{x=0}^{3} \frac{(400p)^x e^{-400p}}{x!}; \]

\[ OC(0.002) \approx 0.991; \]
\[ OC(0.004) \approx 0.921; \]
\[ OC(0.006) \approx 0.779; \]
\[ OC(0.01) \approx 0.433; \]
\[ OC(0.02) \approx 0.042. \]

![Figure 2.6-16: Operating characteristic curve](image)

**2.6-18** Since \( E(X) = 0.2 \), the expected loss is \((0.02)(10,000) = $2,000. \)

**2.6-20**

\[ \frac{\lambda^2 e^{-\lambda}}{2!} = 4 \cdot \frac{\lambda^3 e^{-\lambda}}{3!} \]
\[ \lambda^2 e^{-\lambda}[(4/3)\lambda - 1] = 0 \]
\[ \lambda = 3/4 \]
\[ \sigma^2 = E(X^2) - \mu^2 \]
\[ \frac{3}{4} = E(X^2) - \left(\frac{3}{4}\right)^2 \]
\[ E(X^2) = \frac{9}{16} + \frac{12}{16} = \frac{21}{16}. \]

**2.6-22** Using Minitab, (a) \( \bar{x} = 56.286 \), (b) \( s^2 = 56.205 \).
Chapter 3

Continuous Distributions

3.1 Continuous-Type Data

3.1–2 $\overline{x} = 3.58; \ s = 0.5116.$

3.1–4 (a) $\overline{x} = 5.833; \ s = 1.66;$

(b) The respective class frequencies are 4, 10, 15, 29, 20, 13, 3, 5, 1;

(c) $h(x)$

Figure 3.1–4: Weights of laptop computers
3.1–6 (a) The respective class frequencies are 2, 8, 15, 13, 5, 6, 1:

$h(x)$

![Histogram](image1)

Figure 3.1–6: Weights of nails

(b) $\bar{x} = 8.773$, $\bar{u} = 8.785$, $s_x = 0.365$, $s_u = 0.352$;

(c) $800 * \bar{x} = 7028$, $800 * (\bar{u} + 2 * s_u) = 7591.2$. The answer depends on the cost of the nails as well as the time and distance required if too few nails are purchased.

3.1–8 (a) 

<table>
<thead>
<tr>
<th>Class Interval</th>
<th>Class Limits</th>
<th>Frequency $f_i$</th>
<th>Class Mark $u_i$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(303.5, 307.5)</td>
<td>(304, 307)</td>
<td>1</td>
<td>305.5</td>
</tr>
<tr>
<td>(307.5, 311.5)</td>
<td>(308, 311)</td>
<td>5</td>
<td>309.5</td>
</tr>
<tr>
<td>(311.5, 315.5)</td>
<td>(312, 315)</td>
<td>6</td>
<td>313.5</td>
</tr>
<tr>
<td>(315.5, 319.5)</td>
<td>(316, 319)</td>
<td>10</td>
<td>317.5</td>
</tr>
<tr>
<td>(319.5, 323.5)</td>
<td>(320, 323)</td>
<td>11</td>
<td>321.5</td>
</tr>
<tr>
<td>(323.5, 327.5)</td>
<td>(324, 327)</td>
<td>9</td>
<td>325.5</td>
</tr>
<tr>
<td>(327.5, 331.5)</td>
<td>(328, 331)</td>
<td>7</td>
<td>329.5</td>
</tr>
<tr>
<td>(331.5, 335.5)</td>
<td>(332, 335)</td>
<td>1</td>
<td>333.5</td>
</tr>
</tbody>
</table>

(b) $\bar{x} = 320.1$, $s = 6.7499$;

(c)

$h(x)$

![Histogram](image2)

Figure 3.1–8: Melting points of metal alloys

There are 31 observations within one standard deviation of the mean (62%) and 48 observations within two standard deviations of the mean (96%).
3.1–10 (a) With the class boundaries 0.5, 5.5, 17.5, 38.5, 163.5, 549.5, the respective frequencies are 11, 9, 10, 10, 10.

(b)  

Figure 3.1–10: Mobil home losses

(c) This is a skewed to the right distribution.

3.1–12 (a) With the class boundaries 3.5005, 3.5505, 3.6005, …, 4.1005, the respective class frequencies are 4, 7, 24, 23, 7, 4, 3, 9, 15, 23, 18, 2.

(b)  

Figure 3.1–12: Weights of mirror parts

(c) This is a bimodal histogram.
3.2 Exploratory Data Analysis

3.2–2 (a)

<table>
<thead>
<tr>
<th>Stems</th>
<th>Leaves</th>
<th>Freq</th>
<th>Depths</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2060 6969</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>1350 5057 7290 90 90 90</td>
<td>10</td>
<td>14</td>
</tr>
<tr>
<td>4</td>
<td>00 20 30 40 60 60 60 77 77 85 90 90 90 90 90 90</td>
<td>15</td>
<td>29</td>
</tr>
<tr>
<td>5</td>
<td>11 12 20 20 20 20 20 20 20 20 21 33 33 33 33 33 33 38 38 38 38 38 40 50 54 58 60 60 73 73 90 96</td>
<td>29</td>
<td>(29)</td>
</tr>
<tr>
<td>6</td>
<td>00 06 10 17 20 20 27 28 40 50 50 50 50 50 50 50 50 50 50 50 50 51 60 60 80 80</td>
<td>20</td>
<td>42</td>
</tr>
<tr>
<td>7</td>
<td>07 10 60 70 85 85 90 90 90 90 90 90 90 97 97 97</td>
<td>13</td>
<td>22</td>
</tr>
<tr>
<td>8</td>
<td>10 20 60</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>9</td>
<td>00 38 38 40 50</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

(Multiply numbers by $10^{-2}$.)

(b) The five-number summary is: 2.20, 4.90, 5.52, 6.60, 10.10.

![Box-and-whisker diagram of computer weights](image)

Figure 3.2–2: Box-and-whisker diagram of computer weights

3.2–4 (a) The respective frequencies for the men: 2, 7, 8, 15, 16, 13, 15, 14, 15, 8, 3, 3, 1, 3, 2.

The respective frequencies for the women: 1, 7, 15, 12, 16, 10, 6, 5, 3, 1.

![Histograms](image)

(b) Times for the Fifth Third River Bank Run

Figure 3.2–4: (b) Times for the Fifth Third River Bank Run
(c) Table 3.2-4: Back-to-Back Stem-and-Leaf Diagram of Times for the Fifth Third River Bank Run

<table>
<thead>
<tr>
<th>Male Times</th>
<th>Stems</th>
<th>Female Times</th>
</tr>
</thead>
<tbody>
<tr>
<td>84 64</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>45 40 32 16 15 14 04</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>97 95 95 88 62 60 52 50</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>46 45 37 33 32 32 29 29 28 28 26 23 19 18 09 08</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>99 95 92 87 85 85 82 82 82 78 69 66 62 57 57 55</td>
<td>11</td>
<td>81</td>
</tr>
<tr>
<td>49 48 41 41 38 30 30 28 23 23 12 03 03</td>
<td>12</td>
<td>38</td>
</tr>
<tr>
<td>97 94 92 84 80 80 74 74 67 65 62 62 53 53 52</td>
<td>12</td>
<td>52 53 59 69 84 93</td>
</tr>
<tr>
<td>49 47 41 39 30 29 25 20 14 11 06 05 01 00</td>
<td>13</td>
<td>01 14 17 22 30 33 34 34 35 43</td>
</tr>
<tr>
<td>99 96 87 82 80 78 75 72 72 69 69 69 65 65 57 51</td>
<td>13</td>
<td>70 71 73 85 98</td>
</tr>
<tr>
<td>46 42 38 31 25 13 01 01</td>
<td>14</td>
<td>09 29 38</td>
</tr>
<tr>
<td>82 71 57</td>
<td>14</td>
<td>51 51 55 66 67 81 88 89 98</td>
</tr>
<tr>
<td>20 17 13</td>
<td>15</td>
<td>01 02 06 08 09 11 14 23 26 29</td>
</tr>
<tr>
<td>62</td>
<td>15</td>
<td>56 70 96 97 98 99</td>
</tr>
<tr>
<td>25 12 07</td>
<td>16</td>
<td>00 13 22 36</td>
</tr>
<tr>
<td>99 67</td>
<td>16</td>
<td>55 62 81 86 92 99</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
<td>09 12 32 42</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
<td>86 88</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>05 31</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>61 65 98</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>25</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>79 98</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>39</td>
</tr>
</tbody>
</table>

Multiply numbers by $10^{-1}$

Five-number summary for the male times: 96.35, 114.55, 125.25, 136.86, 169.90.

Five-number summary for the female times: 118.05, 137.01, 150.72, 167.6325, 203.92.

Figure 3.2-4: (d) Box-and-whisker diagrams of male and female times
3.2–6 (a) The five-number summary is: \( \min = 1, \bar{q}_1 = 6.75, \bar{m} = 32, \bar{q}_3 = 90.75, \max = 527. \)

(b) IQR = 90.75 – 6.75 = 84. The inner fence is at 216.75 and the outer fence is at 342.75.

(c)  

3.2–8 (a)
(b) The five-number summary is: \( \text{min} = 5, \bar{q}_1 = 6, \bar{m} = 9, \bar{q}_3 = 15, \text{max} = 55. \)

![Box-and-whisker diagram of maximum capital](image)

(c) \( \text{IQR} = 15 - 6 = 9. \) The inner fence is at 28.5 and the outer fence is at 42.

(d)

![Box-and-whisker diagram of maximum capital with outliers and fences](image)

(e) The 90th percentile is 22.8.
3.2–10 (a)  

<table>
<thead>
<tr>
<th>Stems</th>
<th>Leaves</th>
<th>Frequency</th>
<th>Depths</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>7</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>102</td>
<td>0 0 0</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>103</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>104</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>105</td>
<td>8 9</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>106</td>
<td>1 3 3 6 6 7 7 8 8</td>
<td>9 (9)</td>
<td></td>
</tr>
<tr>
<td>107</td>
<td>3 7 9</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>108</td>
<td>8</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>109</td>
<td>1 3 9</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>110</td>
<td>0 2 2</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

(Multiply numbers by $10^{-1}$.)

Table 3.2–10: Ordered stem-and-leaf diagram of weights of indicator housings

(b)

![Graph](#)

Figure 3.2–10: Weights of indicator housings

$\text{min} = 101.7$, $\bar{q}_1 = 106.0$, $\bar{m} = 106.7$, $\bar{q}_3 = 108.95$, $\text{max} = 110.2$;

(c) The interquartile range in $\text{IQR} = 108.95 - 106.0 = 2.95$. The inner fence is located at $106.7 - 1.5(2.95) = 102.275$ so there are four suspected outliers.
3.2–12 (a) With the class boundaries 2.85, 3.85, . . . , 16.85 the respective frequencies are 1, 0, 2, 4, 1, 14, 20, 11, 4, 5, 0, 1, 0, 1.

(b) 

\[ h(x) \]

![Figure 3.2–12: (b) Lead concentrations](image)

(c) \( \bar{x} = 9.422, \ s = 2.082. \)

![Figure 3.2–12: (c) Lead concentrations showing \( \bar{x}, \bar{x} \pm s, \bar{x} \pm 2s \)](image)

There are 44 (44/64 = 68.75%) within one standard deviation of the mean and 56 (56/64 = 87.5%) within two standard deviations of the mean.
(d)  

<table>
<thead>
<tr>
<th>1976 Leaves</th>
<th>Stems</th>
<th>1977 Leaves</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>9 9 4 3 2 0 0</td>
<td>5</td>
<td>0 7</td>
</tr>
<tr>
<td>9 8 8 7 5 5 4 4 4 4 3 2 2 1 1 0 0 0 0 0</td>
<td>6</td>
<td>3 5 6 8</td>
</tr>
<tr>
<td>9 8 6 6 3 2 2 1 0</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>7 6 6 5 5 4 3 3 1 1 0 0</td>
<td>8</td>
<td>0 1 1 2 2 3 6 7 7 8 8 8 9 9</td>
</tr>
<tr>
<td>9 7 5 3 2 0</td>
<td>9</td>
<td>1 1 2 3 3 3 3 4 4 4 5 5 6 7 8 8 8 9 9 9</td>
</tr>
<tr>
<td>9 6 1</td>
<td>10</td>
<td>2 2 3 4 5 5 7 9</td>
</tr>
<tr>
<td>2</td>
<td>11</td>
<td>0 4 6 9</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>0 3 4 6</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>14</td>
<td>8</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>17</td>
<td>7</td>
</tr>
</tbody>
</table>

Multiply numbers by $10^{-1}$

Table 3.2-12: Back-to-Back Stem-and-Leaf Diagram of Lead Concentrations

![Box-and-whisker diagrams of 1976 and 1977 lead concentrations](image-url)

Figure 3.2-12: Box-and-whisker diagrams of 1976 and 1977 lead concentrations
3.3 Random Variables of the Continuous Type

3.3–2 (a) (i) \[ \int_{0}^{c} \frac{x^3}{4} \, dx = 1 \]
\[ c^4/16 = 1 \]
\[ c = 2; \]
(ii) \[ F(x) = \int_{-\infty}^{x} f(t) \, dt \]
\[ = \int_{0}^{x} t^3/4 \, dt \]
\[ = x^4/16, \]
\[ F(x) = \begin{cases} 0, & -\infty < x < 0, \\ x^4/16, & 0 \leq x < 2, \\ 1, & 2 \leq x < \infty. \end{cases} \]

Figure 3.3–2: (a) Continuous distribution p.d.f. and c.d.f.
(b) (i) \[ \int_{-c}^{c} \frac{3}{16}x^2 \, dx = 1 \]
\[ c^3 / 8 = 1 \]
\[ c = 2; \]

(ii) \[ F(x) = \int_{-\infty}^{x} f(t) \, dt \]
\[ = \int_{-2}^{x} \frac{3}{16}t^2 \, dt \]
\[ = \left[ \frac{1}{16} \cdot \frac{t^3}{3} \right]_{-2}^{x} \]
\[ = \frac{x^3}{16} + \frac{1}{2}, \]

\[ F(x) = \begin{cases} 
0, & -\infty < x < -2, \\
\frac{x^3}{16} + \frac{1}{2}, & -2 \leq x < 2, \\
1, & 2 \leq x < \infty.
\end{cases} \]

Figure 3.3-2: (b) Continuous distribution p.d.f. and c.d.f.
(c) (i) $\int_0^1 \frac{c}{\sqrt{x}} \, dx = 1$

$2c = 1$

$c = 1/2$.

The p.d.f. in part (c) is unbounded.

(ii) $F(x) = \int_{-\infty}^x f(t) \, dt$

$= \int_0^x \frac{1}{2\sqrt{t}} \, dt$

$= \left[ \sqrt{t} \right]_0^x = \sqrt{x}$,

$F(x) = \begin{cases} 
0, & -\infty < x < 0, \\
\sqrt{x}, & 0 \leq x < 1, \\
1, & 1 \leq x < \infty.
\end{cases}$

---

Figure 3.3-2: (c) Continuous distribution p.d.f. and c.d.f.
3.3-4 (a) \[ \mu = E(X) = \int_{0}^{2} \frac{x^4}{4} \, dx \]
\[ = \left[ \frac{x^5}{20} \right]_{0}^{2} = \frac{32}{20} = \frac{8}{5}, \]
\[ \sigma^2 = \text{Var}(X) = \int_{0}^{2} \left( x - \frac{8}{5} \right)^2 \frac{x^3}{4} \, dx \]
\[ = \int_{0}^{2} \left( \frac{x^5}{4} - \frac{4}{5} \frac{x^4}{5} + \frac{16}{25} \frac{x^3}{5} \right) \, dx \]
\[ = \left[ \frac{x^6}{24} - \frac{4x^5}{25} + \frac{4x^4}{25} \right]_{0}^{2} \]
\[ = \frac{64}{24} - \frac{128}{25} + \frac{64}{25} \]
\[ \approx 0.1067, \]
\[ \sigma = \sqrt{0.1067} = 0.3266; \]

(b) \[ \mu = E(X) = \int_{-2}^{2} \left( \frac{3}{16} \right) x^3 \, dx \]
\[ = \left[ \frac{3}{64} \frac{x^4}{4} \right]_{-2}^{2} \]
\[ = \frac{48}{64} - \frac{48}{64} = 0, \]
\[ \sigma^2 = \text{Var}(X) = \int_{-2}^{2} \left( \frac{3}{16} \right) x^4 \, dx \]
\[ = \left[ \frac{3}{80} \frac{x^5}{5} \right]_{-2}^{2} \]
\[ = \frac{96}{80} + \frac{96}{80} \]
\[ = \frac{12}{5}, \]
\[ \sigma = \sqrt{\frac{12}{5}} \approx 1.5492; \]
(c) \[ \mu = E(X) = \int_0^1 \frac{x}{2\sqrt{x}} \, dx \]
\[ = \int_0^1 \frac{\sqrt{x}}{2} \, dx \]
\[ = \left[ \frac{x^{3/2}}{3} \right]_0^1 = \frac{1}{3}, \]

\[ \sigma^2 = \text{Var}(X) = \int_0^1 \left( x - \frac{1}{3} \right)^2 \frac{1}{2\sqrt{x}} \, dx \]
\[ = \int_0^1 \left( \frac{1}{2}x^{3/2} - \frac{2}{6}x^{1/2} + \frac{1}{18}x^{-1/2} \right) \, dx \]
\[ = \left[ \frac{1}{5}x^{5/2} - \frac{2}{9}x^{3/2} + \frac{1}{9}x^{1/2} \right]_0^1 \]
\[ = \frac{4}{45}, \]

\[ \sigma = \frac{2}{\sqrt{45}} \approx 0.2981. \]

3.3–6 (a) \[ M(t) = \int_0^\infty e^{tx} (1/2)x^2 e^{-x} \, dx \]
\[ = \left[ \frac{x^2 e^{-x(1-t)}}{2(1-t)} - \frac{xe^{-x(1-t)}}{(1-t)^2} - \frac{e^{-x(1-t)}}{(1-t)^3} \right]_0^\infty \]
\[ = \frac{1}{(1-t)^3}, \quad t < 1; \]

(b) \[ M'(t) = \frac{3}{(1-t)^2} \]
\[ M''(t) = \frac{12}{(1-t)^3} \]
\[ \mu = M'(0) = 3 \]
\[ \sigma^2 = M''(0) - \mu^2 = 12 - 9 = 3. \]

3.3–8 (a) \[ \int_1^{\infty} \frac{c}{x^2} \, dx = 1 \]
\[ \left[ -\frac{c}{x} \right]_1^{\infty} = 1 \]
\[ c = 1; \]

(b) \[ E(X) = \int_1^{\infty} \frac{x}{x^2} \, dx = \left[ \ln x \right]_1^{\infty}, \text{ which is unbounded.} \]
3.3–10 (a) \[
F(x) = \begin{cases} 
0, & -\infty < x < -1, \\
(x^3 + 1)/2, & -1 \leq x < 1, \\
1, & 1 \leq x < \infty.
\end{cases}
\]

Figure 3.3–10: (a) \(f(x) = (3/2)x^2\) and \(F(x) = (x^3 + 1)/2\)

(b) \[
F(x) = \begin{cases} 
0, & -\infty < x < -1, \\
(x + 1)/2, & -1 \leq x < 1, \\
1, & 1 \leq x < \infty.
\end{cases}
\]

Figure 3.3–10: (b) \(f(x) = 1/2\) and \(F(x) = (x + 1)/2\)
(c) 
\[ F(x) = \begin{cases} 
0, & -\infty < x < -1, \\
(x + 1)^2/2, & -1 \leq x < 0, \\
1 - (1 - x)^2/2, & 0 \leq x < 1, \\
1, & 1 \leq x < \infty.
\end{cases} \]

Figure 3.3-10: (c) \( f(x) \) and \( F(x) \) for Exercise 3.3-10(c)

3.3-12 (a) \( R'(t) = \frac{M'(t)}{M(t)};\quad R'(0) = \frac{M'(0)}{M(0)} = M'(0) = \mu; \)

(b) \( R''(t) = \frac{M(t)M''(t) - [M'(t)]^2}{[M(t)]^2} \), 
\[ R''(0) = M''(0) - [M'(0)]^2 = \sigma^2. \]

3.3-14 \( M(t) = \int_0^{\infty} e^{tx} / (1/10) e^{-x/10} \ dx = \int_0^{\infty} (1/10) e^{-(x/10)(1-10t)} \ dx \)
\[ = (1 - 10t)^{-1}, \quad t < 1/10. \]
\( R(t) = \ln M(t) = -\ln(1 - 10t); \)
\( R'(t) = 10/(1 - 10t) = 10(1 - 10t)^{-1}; \)
\( R''(t) = 100(1 - 10t)^{-2}. \)
Thus \( \mu = R'(0) = 10; \quad \sigma^2 = R''(0) = 100. \)
3.3–16 (b) \[ F(x) = \begin{cases} 
0, & -\infty < x \leq 0, \\
\frac{x}{2}, & 0 < x \leq 1, \\
\frac{1}{2}, & 1 < x \leq 2, \\
\frac{x - 1}{2}, & 2 < x < 3, \\
1, & 3 \leq x < \infty;
\end{cases} \]

Figure 3.3–16: \( f(x) \) and \( F(x) \) for Exercise 3.3-16(a)

(e) \( \frac{q_1}{2} = 0.25 \)
\[ q_1 = 0.5, \]

(d) \( 1 \leq m \leq 2, \)

(e) \( \frac{q_3}{2} - \frac{1}{2} = 0.75 \)
\[ \frac{q_3}{2} = \frac{5}{4} \]
\[ q_3 = \frac{5}{2}. \]

3.3–18 \( F(x) = (x + 1)^2/4, \quad -1 < x < 1. \)

(a) \( F(\pi_{0.64}) = (\pi_{0.64} + 1)^2/4 = 0.64 \)
\[ \pi_{0.64} + 1 = \sqrt{2.56} \]
\[ \pi_{0.64} = 0.6; \]

(b) \( (\pi_{0.25} + 1)^2/4 = 0.25 \)
\[ \pi_{0.25} + 1 = \sqrt{1.00} \]
\[ \pi_{0.25} = 0; \]

(c) \( (\pi_{0.81} + 1)^2/4 = 0.81 \)
\[ \pi_{0.81} + 1 = \sqrt{3.24} \]
\[ \pi_{0.81} = 0.8. \]
3.3–20 (a) \[ 35c + \left( \frac{1}{2} \right) \left( \frac{245}{3} - 35 \right) (c) = 1 \]
\[ \left( \frac{35 + 70}{3} \right) (c) = 1 \]
\[ c = \frac{3}{175} \]

(b) \[ P(X > 65) = \frac{1}{2} \left( \frac{3}{490} \right) \left( \frac{50}{3} \right) = \frac{5}{98} = 0.05; \]

(c) \[ \left( \frac{3}{490} \right) (m) = \frac{1}{2} \]
\[ m = \frac{175}{6} = 29.167. \]

3.3–22 \[ P(X > 2) = \int_{2}^{\infty} 4x^3 e^{-x^4} \, dx = \left[ -e^{-x^4} \right]_{2}^{\infty} = e^{-16}. \]

3.3–24 (a) \[ P(X > 2000) = \int_{2000}^{\infty} \left( \frac{2x}{1000} \right)^2 e^{-\left( \frac{x}{1000} \right)^2} \, dx = \left[ -e^{-\left( \frac{x}{1000} \right)^2} \right]_{2000}^{\infty} = e^{-4}; \]

(b) \[ \left[ -e^{-\left( \frac{x}{1000} \right)^2} \right]_{\pi_{0.75}}^{\infty} = 0.25 \]
\[ e^{-\left( \frac{\pi_{0.75}}{1000} \right)^2} = 0.25 \]
\[ -\left( \frac{\pi_{0.75}}{1000} \right)^2 = \ln(0.25) \]
\[ \pi_{0.75} = 1177.41; \]

(c) \[ \pi_{0.10} = 324.59; \]

(d) \[ \pi_{0.60} = 957.23. \]

3.3–26 (a) \[ \int_{0}^{1} x \, dx + \int_{1}^{\infty} \frac{c}{x^3} \, dx = 1 \]
\[ \left[ \frac{x^2}{2} \right]_{0}^{1} - \left[ \frac{c}{2x^2} \right]_{1}^{\infty} = 1 \]
\[ \frac{1}{2} + \frac{c}{2} = 1 \]
\[ c = 1; \]

(b) \[ E(X) = \int_{0}^{1} x^2 \, dx + \int_{1}^{\infty} \frac{1}{x^2} \, dx = \frac{4}{3}; \]

(c) the variance does not exist;

(d) \[ P(1/2 \leq X \leq 2) = \int_{1/2}^{1} x \, dx + \int_{1}^{2} \frac{1}{x^2} \, dx = \frac{3}{4}. \]

3.4 The Uniform and Exponential Distributions

3.4–2 \( \mu = 0, \quad \sigma^2 = 1/3. \) See the figures for Exercise 3.3-10(b).

3.4–4 \( X \) is \( U(4, 5); \)

(a) \( \mu = 9/2; \quad (b) \sigma^2 = 1/12; \quad (c) 0.5. \)
3.4–6 (a) \[ P(10 < X < 30) = \int_{10}^{30} \left( \frac{1}{20} \right) e^{-x/20} \, dx \]
\[ = \left[ -e^{-x/20} \right]^{30}_{10} = e^{-1/2} - e^{-3/2}; \]

(b) \[ P(X > 30) = \int_{30}^\infty \frac{1}{20} e^{-x/20} \, dx \]
\[ = \left[ -e^{-x/20} \right]^{\infty}_{30} = e^{-3/2}; \]

(c) \[ P(X > 40 | X > 10) = \frac{P(X > 40)}{P(X > 10)} \]
\[ = \frac{e^{-2}}{e^{-1/2}} = e^{-3/2}; \]

(d) \[ \sigma^2 = \theta^2 = 400, \quad M(t) = (1 - 20t)^{-1}. \]

(e) \[ P(10 < X < 30) = 0.383, \text{ close to the relative frequency } \frac{35}{100}; \]
\[ P(X > 30) = 0.223, \text{ close to the relative frequency } \frac{23}{100}; \]
\[ P(X > 40 | X > 10) = 0.223, \text{ close to the relative frequency } \frac{14}{58} = 0.241. \]

3.4–8 (a) \[ f(x) = \left( \frac{2}{3} \right) e^{-2x/3}, \quad 0 \leq x < \infty; \]

(b) \[ P(X > 2) = \int_{2}^{\infty} \frac{2}{3} e^{-2x/3} \, dx = \left[ -e^{-2x/3} \right]^{\infty}_{2} = e^{-4/3}. \]

3.4–10 (a) Using \( X \) for the infected snails and \( Y \) for the control snails, \( \bar{x} = 84.74, \) \( s_x = 64.79, \)
\( \bar{y} = 113.1612903, \) \( s_y = 87.02; \)

(b)

Figure 3.4–10: (b) Box-and-whisker diagrams of distances traveled by infected and control snails
Continuous Distributions

Figure 3.4–10: (c) q-q plots, exponential quantiles versus ordered infected and control snail times

(d) Possibly;
(e) The control snails move further than the infected snails but the distributions of the two sets of distances are similar.

3.4–12 Let \( F(x) = P(X \leq x) \). Then

\[
P(X > x + y \mid X > x) = P(X > y)
\]

\[
\frac{1 - F(x + y)}{1 - F(x)} = 1 - F(y).
\]

That is, with \( g(x) = 1 - F(x) \), \( g(x + y) = g(x)g(y) \). This functional equation implies that

\[
1 - F(x) = g(x) = e^{cx} = e^{c \ln a} = e^{bx}
\]

where \( b = c \ln a \). That is, \( F(x) = 1 - e^{bx} \). Since \( F(\infty) = 1 \), \( b \) must be negative, say \( b = -\lambda \) with \( \lambda > 0 \). Thus \( F(x) = 1 - e^{-\lambda x} \), \( 0 \leq x \), the distribution function of an exponential distribution.

3.4–14 \( E[v(T)] = \int_{0}^{\infty} [x - 0.5(n - x)] \frac{1}{200} \, dx + \int_{n}^{\infty} [n - 5(x - n)] \frac{1}{200} \, dx \)

\[
= \frac{1}{200} \left[ x^2 + \frac{(n - x)^2}{4} \right]_{0}^{\infty} + \frac{1}{200} \left[ 6nx - \frac{5x^2}{2} \right]_{n}^{\infty}
\]

\[
= \frac{1}{200} \left[ -3.25n^2 + 1200n - 100000 \right]
\]

3.4–16 \( E(\text{profit}) = \int_{0}^{n} [x - 0.5(n - x)] \frac{1}{200} \, dx + \int_{n}^{200} [n - 5(x - n)] \frac{1}{200} \, dx \)

\[
= \frac{1}{200} \left[ \frac{x^2}{2} + \frac{(n - x)^2}{4} \right]_{0}^{\infty} + \frac{1}{200} \left[ 6nx - \frac{5x^2}{2} \right]_{n}^{\infty}
\]

\[
= \frac{1}{200} \left[ -3.25n^2 + 1200n - 100000 \right]
\]

\[
\text{derivative} = \frac{1}{200} \left[ -6.5n + 1200 \right] = 0
\]

\[
n = \frac{1200}{6.5} \approx 185.
\]
3.4–18  (a) \( P(X > 40) = \int_{40}^{\infty} \frac{3}{100} e^{-3x/100} \, dx \)
\[= \left[ -e^{-3x/100} \right]_{40}^{\infty} = e^{-1.2}; \]

(b) Flaws occur randomly so we are observing a Poisson process.

3.4–20 \( F(x) = \int_{-\infty}^{x} \frac{e^{-w}}{(1 + e^{-w})^2} \, dw = \frac{1}{1 + e^{-x}}, \quad -\infty < x < \infty. \)
\( G(y) = P \left[ 1 + e^{-X} \leq y \right] = P \left[ X \leq -\ln \left( \frac{1}{y} - 1 \right) \right] \)
\[= \frac{1}{1 + \left( \frac{1}{y} - 1 \right)} = y, \quad 0 < y < 1, \]
the \( U(0,1) \) distribution function.

3.4–22 \( P(X > 100 \mid X > 50) = P(X > 50) = 3/4. \)

3.5  The Gamma and Chi-Square Distributions

3.5–2  Either use integration by parts or
\[ F(x) = P(X \leq x) \]
\[= 1 - \sum_{k=0}^{\alpha-1} \frac{(\lambda x)^k e^{-\lambda x}}{k!}. \]

Thus, with \( \lambda = 1/\theta = 1/4 \) and \( \alpha = 2, \)

\[ P(X < 5) = 1 - e^{-5/4} - \left( \frac{5}{4} \right) e^{-5/4} \]
\[= 0.35536. \]

3.5–4  The moment generating function of \( X \) is \( M(t) = (1 - \theta t)^{-\alpha}, \ t < 1/\theta. \) Thus
\[ M'(t) = \alpha \theta (1 - \theta t)^{-\alpha-1} \]
\[ M''(t) = \alpha (\alpha + 1) \theta^2 (1 - \theta t)^{-\alpha-2}. \]

The mean and variance are
\[ \mu = M'(0) = \alpha \theta \]
\[ \sigma^2 = M''(0) - (\alpha \theta)^2 = \alpha (\alpha + 1) \theta^2 - (\alpha \theta)^2 \]
\[= \alpha \theta^2. \]

3.5–6  (a) \( f(x) = \frac{14.7^{100}}{\Gamma(100)} x^{99} e^{-14.7x}, \quad 0 \leq x < \infty, \)
\[\mu = 100(1/14.7) = 6.80, \quad \sigma^2 = 100(1/14.7)^2 = 0.4628; \]
(b) \( \bar{x} = 6.74, \ s^2 = 0.4617; \)
(c) \( 9/25 = 0.36. \) (See Figure 8.7-2 in the textbook.)
3.5–8  (a) $W$ has a gamma distribution with $\alpha = 7$, $\theta = 1/16$.  
(b) Using Table III in the Appendix, 
\[
P(W \leq 0.5) = 1 - \sum_{k=0}^{6} \frac{8^k e^{-8}}{k!} \\
= 1 - 0.313 = 0.687,
\]
because here $\lambda w = (16)(0.5) = 8$.
3.5–10  $a = 5.226$,  $b = 21.03$.
3.5–12  Since the m.g.f. is that of $\chi^2(24)$, we have  (a) $\mu = 24$;  (b) $\sigma^2 = 48$; and  (c) 0.89, using Table IV.
3.5–14  Note that $\lambda = 5/10 = 1/2$ is the mean number of arrivals per minute. Thus $\theta = 2$ and the p.d.f. of the waiting time before the eighth toll is 
\[
f(x) = \frac{1}{\Gamma(8)^2} x^{8-1} e^{-x/2} \\
= \frac{1}{\Gamma\left(\frac{16}{2}\right)^{216/2}} x^{16/2-1} e^{-x/2}, \quad 0 < x < \infty,
\]
the p.d.f. of a chi-square distribution with $r = 16$ degrees of freedom. Using Table IV, 
\[
P(X > 26.30) = 0.05.
\]
3.5–16  $P(X > 30.14) = 0.05$ where $X$ denotes a single observation. Let $W$ equal the number out of 10 observations that exceed 30.14. Then the distribution of $W$ is $b(10, 0.05)$. Thus 
\[
P(W = 2) = 0.9885 - 0.9139 = 0.0746.
\]
3.5–18  (a) $\mu = \int_{80}^{\infty} x \cdot \frac{x - 80}{50^2} e^{-\frac{(x-80)^50}{50}} dx$. Let $y = x - 80$. Then 
\[
\mu = 80 + \int_{0}^{\infty} y \cdot \frac{1}{\Gamma(2)50^2} y^{2-1} e^{-y/50} dy \\
= 80 + 2(50) = 180.
\]
\[
\text{Var}(X) = \text{Var}(Y) = 2(50^2) = 5000.
\]
(b) 
\[
f'(x) = \frac{1}{50^2} e^{-\frac{(x-80)^50}{50}} - \frac{x - 80}{50^2} \frac{1}{50^2} e^{-\frac{(x-80)^50}{50}} = 0 \quad 50 - x + 80 = 0 \quad x = 130.
\]
(c) 
\[
\int_{80}^{200} \frac{x - 80}{50^2} e^{-\frac{(x-80)^50}{50}} dx = \left[\frac{x - 80}{50} e^{-\frac{(x-80)^50}{50}} - e^{-\frac{(x-80)^50}{50}}\right]_{80}^{200} \\
= \frac{-120}{50} e^{-120/50} - e^{-120/50} + 1 \\
= 1 - \frac{17}{5} e^{-12/5} = 0.6916.
\]
3.6 The Normal Distribution

3.6–2 (a) 0.3078; (b) 0.4959;
    (c) 0.2711; (d) 0.1646.

3.6–4 (a) 1.282; (b) –1.645;
    (c) –1.66; (d) –1.82.

3.6–6 $M(t) = e^{166t+400t^2/2}$ so
(a) $\mu = 166$; (b) $\sigma^2 = 400$;
(c) $P(170 < X < 200) = P(0.2 < Z < 1.7) = 0.3761$;
(d) $P(148 \leq X \leq 172) = P(-0.9 \leq Z \leq 0.3) = 0.4338$.

3.6–8 We must solve $f''(x) = 0$. We have
\[
\ln f(x) = -\ln(\sqrt{3\pi} \sigma) - (x - \mu)^2/2\sigma^2,
\]
\[
f'(x) = \frac{-2(x - \mu)}{2\sigma^2}
\]
\[
f(x)f''(x) - [f'(x)]^2 = \frac{-1}{\sigma^2}
\]
\[
f''(x) = f(x) \left\{ \frac{-1}{\sigma^2} + \left[ \frac{f'(x)}{f(x)} \right] \right\} = 0
\]
\[
\frac{(x - \mu)^2}{\sigma^2} = \frac{1}{\sigma^2}
\]
\[
x - \mu = \pm \sigma \quad \text{or} \quad x = \mu \pm \sigma.
\]

3.6–10 $G(y) = P(Y \leq y) = P(aX + b \leq y)$
\[
= P \left( X \leq \frac{y - b}{a} \right) \quad \text{if} \quad a > 0
\]
\[
= \int_{-\infty}^{(y-b)/a} \frac{1}{\sigma \sqrt{2\pi}} e^{-(x-\mu)^2/2\sigma^2} \, dx
\]
Let $w = ax + b$ so $dw = a \, dx$. Then
\[
G(y) = \int_{-\infty}^{y} \frac{1}{a\sigma \sqrt{2\pi}} e^{-(w-b-a\mu)^2/2a^2\sigma^2} \, dw
\]
which is the distribution function of the normal distribution $N(b + a\mu, \ a^2\sigma^2)$. The case when $a < 0$ can be handled similarly.
### Continuous Distributions

#### 3.6–12 (a)

<table>
<thead>
<tr>
<th>Stems</th>
<th>Leaves</th>
<th>Frequencies</th>
<th>Depths</th>
</tr>
</thead>
<tbody>
<tr>
<td>11•</td>
<td>8</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>12•</td>
<td>0 3</td>
<td>2 3</td>
<td></td>
</tr>
<tr>
<td>12•</td>
<td>5 6</td>
<td>2 5</td>
<td></td>
</tr>
<tr>
<td>13•</td>
<td>1 3 4</td>
<td>3 8</td>
<td></td>
</tr>
<tr>
<td>13•</td>
<td>5 5 7 7 7 9</td>
<td>6 14</td>
<td></td>
</tr>
<tr>
<td>14•</td>
<td>0 0 2 3 4 4 4</td>
<td>8 22</td>
<td></td>
</tr>
<tr>
<td>14•</td>
<td>6 6 7 7 8 9 9</td>
<td>8 30</td>
<td></td>
</tr>
<tr>
<td>15•</td>
<td>0 0 0 0 1 1 1 2 3 3 4 4</td>
<td>12 30</td>
<td></td>
</tr>
<tr>
<td>15•</td>
<td>5 5 6 7 8 8 8 9</td>
<td>8 18</td>
<td></td>
</tr>
<tr>
<td>16•</td>
<td>0 0 0 2 3 4</td>
<td>6 10</td>
<td></td>
</tr>
<tr>
<td>16•</td>
<td>5 5</td>
<td>2 4</td>
<td></td>
</tr>
<tr>
<td>17•</td>
<td>1</td>
<td>1 2</td>
<td></td>
</tr>
<tr>
<td>17•</td>
<td>5</td>
<td>1 1</td>
<td></td>
</tr>
</tbody>
</table>

(b) \[ N(0,1) \text{ quantiles} \]

![Figure 3.6–12: q–q plot of } N(0,1) \text{ quantiles versus data quantiles}]

(c) Yes.

#### 3.6–14 (a)

\[ P(X > 22.07) = P(Z > 1.75) = 0.0401; \]

(b) \[ P(X < 20.857) = P(Z < -1.2825) = 0.10. \] Thus the distribution of \( Y \) is \( b(15, 0.10) \) and from Table II in the Appendix, \( P(Y \leq 2) = 0.8159. \)

#### 3.6–16

\( X \) is \( N(500, 10000); \) so \( [(X - 500)^2/100]^2 \) is \( \chi^2(1) \) and

\[
P \left[ 2.706 \leq \left( \frac{X - 500}{100} \right)^2 \leq 5.204 \right] = 0.975 - 0.900 = 0.075.
\]
3.6–18 \[ G(x) = P(X \leq x) \]
\[ = P(e^Y \leq x) \]
\[ = P(Y \leq \ln x) \]
\[ = \int_{-\infty}^{\ln x} \frac{1}{\sqrt{2\pi}} e^{-\frac{(y-10)^2}{2}} dy = \Phi(\ln x - 10) \]
\[ g(x) = G'(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{(\ln x - 10)^2}{2}} \frac{1}{x}, \quad 0 < x < \infty. \]
\[ P(10,000 < X < 20,000) = P(\ln 10,000 < Y < \ln 20,000) \]
\[ = \Phi(\ln 20,000 - 10) - \Phi(\ln 10,000 - 10) \]
\[ = 0.461557 - 0.214863 = 0.246694 \text{ using Minitab.} \]

3.6–20

<table>
<thead>
<tr>
<th>( k )</th>
<th>Strengths</th>
<th>( p = k/10 )</th>
<th>( z_{1-p} )</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.2</td>
<td>0.10</td>
<td>-1.282</td>
</tr>
<tr>
<td>2</td>
<td>8.9</td>
<td>0.20</td>
<td>-0.842</td>
</tr>
<tr>
<td>3</td>
<td>9.7</td>
<td>0.30</td>
<td>-0.524</td>
</tr>
<tr>
<td>4</td>
<td>10.5</td>
<td>0.40</td>
<td>-0.253</td>
</tr>
<tr>
<td>5</td>
<td>10.9</td>
<td>0.50</td>
<td>0.000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>( k )</th>
<th>Strengths</th>
<th>( p = k/10 )</th>
<th>( z_{1-p} )</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>11.7</td>
<td>0.60</td>
<td>0.253</td>
</tr>
<tr>
<td>7</td>
<td>12.9</td>
<td>0.70</td>
<td>0.524</td>
</tr>
<tr>
<td>8</td>
<td>13.9</td>
<td>0.80</td>
<td>0.842</td>
</tr>
<tr>
<td>9</td>
<td>15.3</td>
<td>0.90</td>
<td>1.282</td>
</tr>
</tbody>
</table>

Figure 3.6–20: q-q plot of \( N(0, 1) \) quantiles versus data quantiles
It seems to be an excellent fit.

3.6–22 The three respective distributions are exponential with \( \theta = 4 \), \( \chi^2(4) \), and \( N(4, 1) \). Each of these has a mean of \( \mu = 4 \) and the mean is the first derivative of the moment-generating function evaluated at \( t = 0 \). Thus the slopes at \( t = 0 \) are all equal to 4.
3.6–24 (a) Figure 3.6–24: \( q-q \) plot of \( N(0, 1) \) quantiles versus data quantiles

(b) It looks like an excellent fit.

3.6–26 (a) \( \bar{x} = 55.95, s = 1.78 \);

(b) Figure 3.6–26: \( q-q \) plot of \( N(0, 1) \) quantiles versus data quantiles

(c) It looks like an excellent fit.

(d) The label weight could actually be a little larger.
3.7 Additional Models

3.7–2 With \( b = \ln 1.1 \),

\[
G(w) = 1 - \exp \left[ -\frac{a}{\ln 1.1} e^{w \ln 1.1} + \frac{a}{\ln 1.1} \right]
\]

\[
G(64) - G(63) = 0.01
\]

\[
a = 0.00002646 = \frac{1}{37792.19477}
\]

\[
P(W \leq 71 \mid 70 < W) = \frac{P(70 < W \leq 71)}{P(70 < W)}
\]

\[
= 0.0217.
\]

3.7–4 \( \lambda(w) = ae^{bw} + c \)

\[
H(w) = \int_{0}^{w} (ae^{bt} + c) \, dt
\]

\[
= \frac{a}{b} (e^{bw} - 1) + cw
\]

\[
G(w) = 1 - \exp \left[ -\frac{a}{b} (e^{bw} - 1) - cw \right], \quad 0 < \infty
\]

\[
g(w) = (ae^{bw} + c)e^{-\frac{a}{b} (e^{bw} - 1) - cw}, \quad 0 < \infty.
\]

3.7–6 (a) \( 1/4 - 1/8 = 1/8; \)  (b) \( 1/4 - 1/4 = 0; \)

(c) \( 3/4 - 1/4 = 1/2; \)  (d) \( 1 - 1/2 = 1/2; \)

(e) \( 3/4 - 3/4 = 0; \)  (f) \( 1 - 3/4 = 1/4. \)

3.7–8 There is a discrete point of probability at \( x = 0 \), \( P(X = 0) = 1/3 \), and \( F'(x) = (2/3)e^{-x} \) for \( 0 < x \). Thus

\[
\mu = E(X) = (0)(1/3) + \int_{0}^{\infty} x(2/3)e^{-x} \, dx
\]

\[
= (2/3)[-xe^{-x} + e^{-x}]_{0}^{\infty} = 2/3,
\]

\[
E(X^2) = (0)^2(1/3) + \int_{0}^{\infty} x^2(2/3)e^{-x} \, dx
\]

\[
= (2/3)[-x^2e^{-x} - 2xe^{-x} - 2e^{-x}]_{0}^{\infty} = 4/3,
\]

so

\[
\sigma^2 = Var(X) = 4/3 - (2/3)^2 = 8/9.
\]
3.7–10 \[ T = \begin{cases} X, & X \leq 4, \\ 4, & 4 < X; \end{cases} \]

\[ E(T) = \int_0^4 x \left( \frac{1}{5} \right) e^{-x/5} \, dx + \int_4^\infty 4 \left( \frac{1}{5} \right) e^{-x/5} \, dx \]

\[ = \left[-xe^{-x/5} - 5e^{-x/5}\right]_0^4 + 4 \left[-e^{-x/5}\right]_4^\infty \]

\[ = 5 - 4e^{-4/5} - 5e^{-4/5} + 4e^{-4/5} \]

\[ = 5 - 5e^{-4/5} \approx 2.753. \]

3.7–12 (a) \[ t = \ln x \]

\[ x = e^t \]

\[ \frac{dx}{dt} = e^t \]

\[ g(t) = f(e^t) \frac{dx}{dt} = e^t e^{-e^t}, \quad -\infty < t < \infty. \]

(b) \[ t = \alpha + \beta \ln w \]

\[ \frac{dt}{dw} = \frac{\beta}{w} \]

\[ h(w) = e^{\alpha + \beta \ln w} e^{-\alpha + \beta \ln w} \left( \frac{\beta}{w} \right) \]

\[ = \beta w^{\beta-1} e^{\alpha - w^\beta e^\alpha}, \quad 0 < w < \infty. \]

3.7–14 (a) \[ (0.03) \int_{1/30}^1 6(1-x)^5 \, dx = 0.0198; \]

(b) \[ E(X) = (0.97)(0) + 0.03 \int_0^1 x6(1-x)^5 \, dx = 0.0042857; \]

The expected payment is \[ E(X) \cdot \$30,000 = \$128.57. \]

3.7–16 \[ 2500m \int_0^1 \frac{1}{10} e^{-x/10} \, dx + (m/2)2500 \int_1^2 \frac{1}{10} e^{-x/10} \, dx = 200 \]

\[ 2500[1 - e^{-1/10}] + 1250[m(1/e^{1/10} - e^{-2/10})] = 200 \]

\[ 2500m - 1250me^{-1/10} - 1250me^{-2/10} = 200 \]

\[ m = \frac{4}{50 - 25e^{-1/10} - 25e^{-2/10}} \]

\[ = 0.5788. \]
3.7-18 \[ P(X > x) = \int_x^\infty \left(\frac{t}{4}\right)^3 e^{-(t/4)^4} \, dt = e^{-(x/4)^4}; \]

\[ P(X > 5 \mid X > 4) = \frac{P(X > 5)}{P(X > 4)} = \frac{e^{-625/256}}{e^{-1}} = e^{-369/256}. \]

3.7-20 (a) \[ \int_{40}^{60} \frac{2x}{50^2} e^{-(x/50)^2} \, dx = \left[ -e^{-(x/50)^2} \right]_{40}^{60} = e^{-16/25} - e^{-36/25}; \]

(b) \[ P(X > 80) = \left[ -e^{-(x/50)^2} \right]_{80}^{\infty} = e^{-64/25}. \]

3.7-22 (a) \[ F(y) = \int_0^y \frac{1}{100} \, dy = \frac{y}{100}, \quad 0 < y < 100 \]

\[ e(x) = \int_x^{100} (y - x) \cdot \frac{1}{100} \, dy \]

\[ = \frac{1}{100} \left[ \frac{(y - x)^2}{2} \right]_x^{100} \]

\[ = \frac{1}{100} \cdot \frac{(100 - x)^2}{2} = \frac{100 - x}{2}. \]

(b) \[ F(y) = \int_y^{50} \frac{50}{t^2} \, dt = 1 - \frac{50}{y} \]

\[ e(x) = \int_x^{\infty} (y - x)(50/y^2) \, dy \]

\[ = \frac{1}{1 - (1 - 50/y)} \]

\[ = \infty. \]
Chapter 4

Bivariate Distributions

4.1 Bivariate Distributions

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>( \frac{1}{16} )</th>
<th>( \frac{1}{16} )</th>
<th>( \frac{1}{16} )</th>
<th>( \frac{1}{16} )</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4</td>
<td>( \frac{1}{16} )</td>
<td>( \frac{1}{16} )</td>
<td>( \frac{1}{16} )</td>
<td>( \frac{1}{16} )</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>( \frac{1}{16} )</td>
<td>( \frac{1}{16} )</td>
<td>( \frac{1}{16} )</td>
<td>( \frac{1}{16} )</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>( \frac{1}{16} )</td>
<td>( \frac{1}{16} )</td>
<td>( \frac{1}{16} )</td>
<td>( \frac{1}{16} )</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>( \frac{1}{16} )</td>
<td>( \frac{1}{16} )</td>
<td>( \frac{1}{16} )</td>
<td>( \frac{1}{16} )</td>
</tr>
</tbody>
</table>

\( \frac{1}{16} \) \( \frac{2}{16} \) \( \frac{3}{16} \) \( \frac{4}{16} \)

(e) Independent, because \( f_1(x)f_2(y) = f(x,y) \).

\[
\begin{array}{cccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline
\frac{1}{25} & \frac{1}{25} \\
\frac{1}{25} & \frac{1}{25} \\
\frac{1}{25} & \frac{1}{25} \\
\frac{1}{25} & \frac{1}{25} \\
\frac{1}{25} & \frac{1}{25} \\
\frac{1}{25} & \frac{1}{25} \\
\frac{1}{25} & \frac{1}{25} \\
\frac{1}{25} & \frac{1}{25} \\
\frac{1}{25} & \frac{1}{25} \\
\frac{1}{25} & \frac{1}{25} \\
\end{array}
\]
(c) Not independent, because \( f_1(x)f_2(y) \neq f(x,y) \) and also because the support is not rectangular.

### 4.1-6

\[
\frac{25!}{7!8!6!4!}(0.30)^7(0.40)^8(0.20)^6(0.10)^4 = 0.00405.
\]

### 4.1-8

(a) \( f(x, y) = \frac{7!}{x!y!(7-x-y)!}(0.78)^x(0.01)^y(0.21)^{7-x-y}, \quad 0 \leq x + y \leq 7; \)

(b) \( X \) is \( b(7, 0.78), \quad x = 0, 1, \ldots, 7. \)

### 4.1-10

(a) \( P \left(0 \leq X \leq \frac{3}{4}\right) = \int_{0}^{\frac{3}{4}} \int_{0}^{\frac{3}{4}} \frac{3}{2} dy \, dx \)

\[= \int_{0}^{\frac{3}{4}} \frac{3}{2} \left(1 - x^2\right) dx = \frac{11}{16}; \]

(b) \( P \left(\frac{3}{4} \leq Y \leq 1\right) = \int_{\frac{3}{4}}^{1} \int_{0}^{\frac{3}{4}} \frac{3}{2} dx \, dy \)

\[= \int_{\frac{3}{4}}^{1} \frac{3}{2} \left(\sqrt{y} - \frac{1}{2}\right) dy \]

\[= \frac{5}{8} - \left(\frac{1}{2}\right)^{3/2}; \]

(c) \( P \left(\frac{3}{4} \leq X \leq 1, \frac{3}{4} \leq Y \leq 1\right) = \int_{\frac{3}{4}}^{1} \int_{\frac{3}{4}}^{1} \frac{3}{2} dx \, dy \)

\[= \int_{\frac{3}{4}}^{1} \frac{3}{2} \left(\sqrt{y} - \frac{3}{4}\right) dy \]

\[= \frac{5}{8} - \left(\frac{3}{4}\right)^{3/2}; \]

(d) \( P(X \geq \frac{3}{4}, Y \geq \frac{3}{4}) = P\left(\frac{3}{4} \leq X \leq 1, \frac{3}{4} \leq Y \leq 1\right) \)

\[= \frac{5}{8} - \left(\frac{3}{4}\right)^{3/2}. \]

(e) \( X \) and \( Y \) are dependent.

### 4.1-12

(a) \( f_1(x) = \int_{0}^{1} (x + y) dy \)

\[= \left[xy + \frac{1}{2}y^2\right]_{0}^{1} = x + \frac{1}{2}, \quad 0 \leq x \leq 10; \]

\( f_2(y) = \int_{0}^{1} (x + y) \, dx = y + \frac{1}{2}, \quad 0 \leq y \leq 1; \)

\( f(x, y) = x + y \neq \left(x + \frac{1}{2}\right) \left(y + \frac{1}{2}\right) = f_1(x)f_2(y). \)

(b) \( \mu_x = \int_{0}^{1} x \left(x + \frac{1}{2}\right) \, dx = \left[\frac{1}{3}x^3 + \frac{1}{4}x^2\right]_{0}^{1} = \frac{7}{12}; \)

(c) \( \mu_y = \int_{0}^{1} y \left(y + \frac{1}{2}\right) \, dy = \frac{7}{12}; \)

(d) \( E(X^2) = \int_{0}^{1} x^2 \left(x + \frac{1}{2}\right) \, dx = \left[\frac{1}{4}x^4 + \frac{1}{6}x^3\right]_{0}^{1} = \frac{5}{12}; \)

\( \sigma_x^2 = E(X^2) - \mu_x^2 = \frac{5}{12} - \left(\frac{7}{12}\right)^2 = \frac{11}{144}. \)
\[ (e) \text{ Similarly, } \sigma_Y^2 = \frac{11}{144}. \]

### 4.1 The area of the space is

\[
\int_2^6 \int_1^{14-2t_2} dt_1 dt_2 = \int_2^6 (13 - 2t_2) \, dt_2 = 20;
\]

Thus

\[
P(T_1 + T_2 > 10) = \int_2^4 \int_{10-t_2}^{14-2t_2} \frac{1}{20} \, dt_1 dt_2
\]

\[
= \int_2^4 \frac{4-t_2}{20} \, dt_2
\]

\[
= \left[ \frac{-(4 - t_2)^2}{40} \right]_2^4 = \frac{1}{10}
\]

### 4.2 The Correlation Coefficient

#### 4.2–2 (c)

\[
\mu_X = 0.5(0) + 0.5(1) = 0.5,
\]

\[
\mu_Y = 0.2(0) + 0.6(1) + 0.2(2) = 1,
\]

\[
\sigma_X^2 = (0 - 0.5)^2(0.5) + (1 - 0.5)^2(0.5) = 0.25,
\]

\[
\sigma_Y^2 = (0 - 1)^2(0.2) + (1 - 1)^2(0.6) + (2 - 1)^2(0.2) = 0.4,
\]

\[
\text{Cov}(X, Y) = (0)(0)(0.2) + (1)(2)(0.2) + (0)(1)(0.3) + (1)(1)(0.3) - (0.5)(1) = 0.2,
\]

\[
\rho = \frac{0.2}{\sqrt{0.25} \sqrt{0.4}} = \sqrt{0.4};
\]

\[
(d) \ y = 1 + \sqrt{0.4} \left( \frac{\sqrt{0.4}}{\sqrt{0.25}} \right) (x - 0.5) = 0.6 + 0.8x.
\]

#### 4.2–4

\[
E[a_1u_1(X_1, X_2) + a_2u_2(X_1, X_2)]
\]

\[
= \sum_{(x_1, x_2) \in R} [a_1u_1(x_1, x_2) + a_2u_2(x_1, x_2)]f(x_1, x_2)
\]

\[
= a_1 \sum_{(x_1, x_2) \in R} u_1(x_1, x_2)f(x_1, x_2) + a_2 \sum_{(x_1, x_2) \in R} u_2(x_1, x_2)f(x_1, x_2)
\]

\[
= a_1E[u_1(X_1, X_2)] + a_2E[u_2(X_1, X_2)].
\]

### 4.2–6

Note that \( X \) is \( b(3, 1/6) \), \( Y \) is \( b(3, 1/2) \) so

\[ (a) \ E(X) = 3(1/6) = 1/2; \]

\[ (b) \ E(Y) = 3(1/2) = 3/2; \]

\[ (c) \ \text{Var}(X) = 3(1/6)(5/6) = 5/12; \]

\[ (d) \ \text{Var}(Y) = 3(1/2)(1/2) = 3/4; \]

Chapter 4

(e) \( \text{Cov}(X, Y) = 0 + (1)f(1, 1) + 2f(1, 2) + 2f(2, 1) - (1/2)(3/2) \)
\[ = (1)(1/6) + 2(1/8) + 2(1/24) - 3/4 \]
\[ = -1/4; \]

(f) \( \rho = \frac{-1/4}{\sqrt{\frac{5}{12} \frac{3}{4}}} = -\frac{1}{\sqrt{5}} \)

4.2–8 (b)

<table>
<thead>
<tr>
<th>( x )</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>( y )</td>
<td>0</td>
<td>1/3</td>
<td>2/3</td>
</tr>
</tbody>
</table>

(c) \( \text{Cov}(X, Y) = (1)(1)\left(\frac{1}{6}\right) - \left(\frac{2}{3}\right)\left(\frac{2}{3}\right) = \frac{1}{6} - \frac{4}{9} = \frac{-5}{18}; \)

(d) \( \sigma_x^2 = \frac{2}{6} + \frac{4}{6} - \left(\frac{2}{3}\right)^2 = \frac{5}{9} = \sigma_y^2, \)
\[ \rho = \frac{-5/18}{\sqrt{(5/9)(5/9)}} = -\frac{1}{2}; \]

(e) \( y = \frac{2}{3} - \frac{1}{2} \sqrt{\frac{5}{9}/\frac{5}{9}} \left( x - \frac{2}{3} \right) \)
\[ y = 1 - \frac{1}{2} x. \]

4.2–10 (a) \( f_1(x) = \int_0^x 2 \, dy = 2x, \quad 0 \leq x \leq 1, \)
\[ f_2(y) = \int_y^1 2 \, dx = 2(1 - y), \quad 0 \leq y \leq 1; \]

(b) \( \mu_x = \int_0^1 2x^2 \, dx = \frac{2}{3}, \)
\[ \mu_y = \int_0^1 2y(1 - y) \, dy = \frac{1}{3}, \)
\[ \sigma_x^2 = E(X^2) - (\mu_x)^2 = \int_0^1 2x^3 \, dx - \left(\frac{2}{3}\right)^2 = \frac{1}{2} - \frac{4}{9} = \frac{1}{18}, \]
\[ \sigma_y^2 = E(Y^2) - (\mu_y)^2 = \int_0^1 2y^2(1 - y) \, dy - \left(\frac{1}{3}\right)^2 = \frac{1}{6} - \frac{1}{9} = \frac{1}{18}, \]
\[ \text{Cov}(X, Y) = E(XY) - \mu_x \mu_y = \int_0^1 \int_0^x 2xy \, dy \, dx - \left(\frac{2}{3}\right)\left(\frac{1}{3}\right) = \frac{1}{4} - \frac{2}{9} = \frac{1}{36}; \]
\[ \rho = \frac{\frac{1}{36}}{\sqrt{1/18} \sqrt{1/18}} = \frac{1}{2}; \]

(c) \( y = \frac{1}{3} + \frac{1}{2} \sqrt{\frac{1/18}{1/18}} \left( x - \frac{2}{3} \right) = 0 + \frac{1}{2} x. \)
4.2–12 (a) \[ f_1(x) = \int_x^1 8xy \, dy = 4x(1-x^2), \quad 0 \leq x \leq 1, \]
\[ f_2(y) = \int_0^y 8xy \, dx = 4y^3, \quad 0 \leq x \leq 1; \]

(b) \[ \mu_x = \int_0^1 x4x(1-x^2) \, dx = \frac{8}{15}, \]
\[ \mu_y = \int (y \cdot 4y^3 \, dy = \frac{4}{5}, \]
\[ \sigma^2_x = \int_0^1 (x-8/15)^2 4x(1-x^2) \, dx = \frac{11}{225}, \]
\[ \sigma^2_y = \int ((y-4/5)^2 \cdot 4y^3 \, dy = \frac{2}{75}, \]
\[ \text{Cov}(X,Y) = \int_0^1 \int_x^1 (x-8/15)(y-4/5)8xy \, dy \, dx = \frac{4}{225}, \]
\[ \rho = \frac{4/225}{\sqrt{(11/225)(2/75)}} = \frac{2\sqrt{66}}{33}; \]

(c) \[ y = \frac{20}{33} + \frac{4x}{11}. \]

4.3 Conditional Distributions

4.3–2

\[
\begin{array}{ccc|c}
2 & 1 & 3 & 4 \\
\frac{1}{4} & \frac{3}{4} & g(x \mid 2) & \\
1 & 3 & 1 & g(x \mid 1) \\
\frac{1}{4} & \frac{1}{4} & & \\
1 & 2 & & \\
\hline
\end{array}
\]

\[
\begin{array}{cc|c}
2 & 3 & h(y \mid 1) \\
\frac{1}{4} & \frac{3}{4} & & \\
1 & 3 & h(y \mid 2) \\
\frac{1}{4} & \frac{1}{4} & & \\
1 & 2 & & \\
\hline
\end{array}
\]

\[
\begin{array}{c|c}
\mu_{x \mid 1} = 5/4, \mu_{x \mid 2} = 7/4, \mu_{y \mid 1} = 5/4, \mu_{y \mid 2} = 7/4; \\
\sigma^2_{x \mid 1} = \sigma^2_{x \mid 2} = \sigma^2_{y \mid 1} = \sigma^2_{y \mid 2} = 3/16.
\end{array}
\]
4.3-4 (a) \( X \) is \( b(400, 0.75) \);
(b) \( E(X) = 300, \ Var(X) = 75 \);
(c) \( b(300, 2/3) \);
(d) \( E(Y) = 200, \ Var(Y) = 200/3 \).

4.3-6 (a) \( P(X = 500) = 0.40, P(Y = 500) = 0.35 \),
\( P(Y = 500 | X = 500) = 0.50, P(Y = 100 | X = 500) = 0.25 \);
(b) \( \mu_X = 485, \mu_Y = 510, \sigma_X^2 = 118,275, \sigma_Y^2 = 130,900 \);
(c) \( \mu_{X|Y=100} = 2400/7, \mu_{Y|X=500} = 525 \);
(d) \( \text{Cov}(X,Y) = 49650 \);
(e) \( \rho = 0.399 \).

4.3-8 (a) \( X \) and \( Y \) have a trinomial distribution with \( n = 30, p_1 = 1/6, p_2 = 1/6 \).
(b) The conditional p.d.f. of \( X \), given \( Y = y \), is
\[
b(n - y, \frac{p_1}{1-p_2}) = b(30 - y, 1/5).
\]
(c) Since \( E(X) = 5 \) and \( \text{Var}(X) = 25/6, E(X^2) = \text{Var}(X) + [E(X)]^2 = 25/6 + 25 = 175/6 \). Similarly, \( E(Y) = 5, \text{Var}(Y) = 25/6, E(Y^2) = 175/6 \). The correlation coefficient is
\[
\rho = \sqrt{\frac{(1/6)(1/6)}{(5/6)(5/6)}} = -1/5
\]
so
\[
E(XY) = -1/5 \sqrt{(25/6)(25/6)} + (5)(5) = 145/6.
\]
Thus
\[
E(X^2 - 4XY + 3Y^2) = \frac{175}{6} - 4\left(\frac{145}{6}\right) + 3\left(\frac{175}{6}\right) = \frac{120}{6} = 20.
\]

4.3-10 (a) \( f(x,y) = 1/[10(10-x)], \quad x = 0,1,\ldots,9, \quad y = x,x+1,\ldots,9; \)
(b) \( f_2(y) = \sum_{x=0}^{y} \frac{1}{10(10-x)}, \quad y = 0,1,\ldots,9; \)
(c) \( E(Y|x) = (x+9)/2 \).

4.3-12 From Example 4.1-10, \( \mu_X = \frac{1}{3}, \mu_Y = \frac{2}{3}, \) and \( E(Y^2) = \frac{1}{2} \),
\[
E(X^2) = \int_0^1 2x^2(1-x) \, dx = \frac{1}{6}, \quad \sigma_X^2 = \frac{1}{6} - \left(\frac{1}{3}\right)^2 = \frac{1}{18}, \quad \sigma_Y^2 = \frac{1}{2} - \left(\frac{2}{3}\right)^2 = \frac{1}{18};
\]
\[
\text{Cov}(X,Y) = \int_0^1 \int_0^1 2xy \, dy \, dx - \left(\frac{1}{3}\right)\left(\frac{2}{3}\right) = \frac{1}{4} - \frac{2}{9} = \frac{1}{36},
\]
so
\[
\rho = \frac{1/36}{\sqrt{1/18} \sqrt{1/18}} = \frac{1}{2}.
\]

Distributions of Two Random Variables

4.3–14 (b) \[ f_1(x) = \begin{cases} \int_0^x \frac{1}{8} dy &= x/8, & 0 \leq x \leq 2, \\ \int_x^2 \frac{1}{8} dy &= 1/4, & 2 < x < 4, \\ \int_2^4 \frac{1}{8} dy &= (6 - x)/8, & 4 \leq x \leq 6; \end{cases} \]

(c) \[ f_2(y) = \int_y^{y+2} 1/8 dx = 1/4, \quad 0 \leq y \leq 4; \]

(d) \[ h(y \mid x) = \begin{cases} 1/x, & 0 \leq y \leq x, \quad 0 \leq x \leq 2, \\ 1/2, & x - 2 < y < x, \quad 2 < x < 4, \\ 1/(6 - x), & x - 2 \leq y \leq 4, \quad 4 \leq x \leq 6; \end{cases} \]

(e) \[ g(x \mid y) = 1/2, \quad y \leq x \leq y + 2; \]

(f) \[ E(Y \mid x) = \begin{cases} \int_0^x y \left( \frac{1}{x} \right) dy &= \frac{x}{2}, & 0 \leq x \leq 2, \\ \int_x^2 y \cdot \frac{1}{2} dy &= \left[ \frac{y^2}{4} \right]_{x-2}^x = x - 1, & 2 < x < 4, \\ \int_2^4 \frac{y}{6-x} dy &= \left[ \frac{y^2}{2(6-x)} \right]_{x-2}^4 = \frac{x + 2}{2}, & 4 \leq x < 6; \end{cases} \]

(g) \[ E(X \mid y) = \int_y^{y+2} x \cdot \frac{1}{2} dx = \left[ \frac{x^2}{4} \right]_y^{y+2} = y + 1, \quad 0 \leq y \leq 4; \]

Figure 4.3–14: (h) \( y = E(Y \mid x) \quad \) (i) \( x = E(X \mid y) \)

4.3–16 (a) \[ h(y \mid x) = \frac{1}{x}, \quad 0 < y < x, \quad 0 < x < 1; \]

(b) \[ E(Y \mid x) = \int_0^x \frac{y}{x} dy = \frac{x}{2}; \]

(c) \[ f(x, y) = h(y \mid x)f_1(x) = \left( \frac{1}{x} \right)(1) = \frac{1}{x}, \quad 0 < y < x, \quad 0 < x < 1; \]
(d) \( f_2(y) = \int_{y}^{1} \frac{1}{x} \, dx = -\ln y, \quad 0 < y < 1. \)

4.3–18 (a) \( f(x, y) = f_1(x)h(y \mid x) = 1 \cdot \frac{1}{x + 1} = \frac{1}{x + 1}, \quad 0 < y < x + 1, \ 0 < x < 1; \)

(b) \( E(Y \mid x) = \int_{0}^{x+1} y \left( \frac{1}{x + 1} \right) \, dy = \left[ \frac{y^2}{2(x+1)} \right]_{0}^{x+1} = \frac{x + 1}{2}; \)

(c) \[
\begin{align*}
\quad \quad f_2(y) = \begin{cases} 
\int_{0}^{1} \frac{1}{x + 1} \, dx = [\ln(x + 1)]_{0}^{1} = \ln 2, & 0 < y < 1, \\
\int_{y-1}^{1} \frac{1}{x + 1} \, dx = [\ln(x + 1)]_{y-1}^{1} = \ln 2 - \ln y, & 1 < y < 2.
\end{cases}
\end{align*}
\]

4.3–20 (a) In order for \( x, y, \) and \( 1 - x - y \) to be the sides of a triangle, it must be true that

\[
\begin{align*}
&x + y > 1 - x - y \quad \text{or} \quad 2x + 2y > 1; \\
x + 1 - x - y > y \quad \text{or} \quad y < 1/2; \\
y + 1 - x - y > x \quad \text{or} \quad x < 1/2. \\
\end{align*}
\]

(b) \( f(x, y) = \frac{1}{1/8} = 8, \quad \frac{1}{2} - x < y < \frac{1}{2}, \ 0 < x < \frac{1}{2}; \)

\[
\begin{align*}
E(T) &= \int_{0}^{1/2} \int_{1/2-x}^{1/2} \frac{1}{4} \sqrt{(2x + 2y - 1)(1 - 2x)(1 - 2y)} \, dy \, dx \\
&= \frac{\pi}{105} = 0.0299; \\
\sigma^2 &= E(T^2) - [E(T)]^2 \\
&= \int_{0}^{1/2} \int_{1/2-x}^{1/2} \frac{1}{4} (2x + 2y - 1)(1 - 2x)(1 - 2y) \, dy \, dx - \left[ \frac{\pi}{105} \right]^2 \\
&= \frac{1}{960} - \frac{\pi^2}{11025} = 0.00014646.
\end{align*}
\]
(c) \( f_1(x) = \int_{1/2-x}^{1/2} 8 \, dy = 8x, \quad 0 < x < \frac{1}{2}; \)

\[ h(y \mid x) = \frac{f(x, y)}{f_1(x)} = \frac{8}{8x} = \frac{1}{x}, \quad \frac{1}{2} - x < y < \frac{1}{2}, \quad 0 < x < \frac{1}{2}; \]

(d) The distribution function of \( X \) is

\[ F_1(x) = \int_0^x 8t \, dt = 4x^2. \]

If \( a \) is the value of a \( U(0, 1) \) random variable (a random number), then let \( a = 4x^2 \) and

\[ x = (1/2)\sqrt{a} \]

is an observation of \( X \).

The conditional distribution function of \( Y \), given \( X = x \), is

\[ G(y) = \int_{1/2-x}^{y} \frac{1}{x} \, dt = \frac{y}{x} - \frac{1}{2x} + 1. \]

If \( b \) is the value of a \( U(0, 1) \) random variable (a random number), then solving

\[ b = G(y) = \frac{y}{x} - \frac{1}{2x} + 1 \]

for \( y \) yields

\[ y = xb - x + \frac{1}{2} \]

as an observation of \( Y \).

Here is some Maple code for a simulation of the areas of 5000 triangles:

```maple
> for k from 1 to 5000 do
> a := rng(); # rng() yields a random number
> b := rng(); # rng() yields a random number
> X := sqrt(a)/2;
> Y := X*b + 1/2 - X;
> Z := 1 - X - Y;
> TT(k) := 1/4*sqrt((2*X + 2*Y - 1)*(1 - 2*X)*(1 - 2*Y));
> # TT(k) finds the area of one triangle
> od:
> T := [seq(TT(k), k = 1 .. 5000)]; # put areas in a sequence
> tbar := Mean(T); # finds the sample mean
> tvar := Variance(T); # finds the sample variance
> tbar := 0.02992759330
> tvar := 0.0001469367443
```

(e) \( X \) is \( U(0, 1/2) \) so \( f_1(x) = 2, \quad 0 < x < 1/2; \) The conditional p.d.f. of \( Y \), given \( X = x \) is \( U(1/2 - x, 1/2) \) so \( h(y \mid x) = 1/x, \quad 1/2 - x < y < 1/2. \) Thus the joint p.d.f. of \( X \) and \( Y \) is

\[ f(x, y) = 2 \frac{1}{x} = \frac{2}{x}, \quad \frac{1}{2} - x < y < \frac{1}{2}, \quad 0 < x < \frac{1}{2}. \]
\[ E(T) = \int_0^{1/2} \int_{1/2-x}^{1/2} \frac{1}{4} \sqrt{(2x + 2y - 1)(1 - 2x)(1 - 2y)} \frac{2}{x} \, dy \, dx \]
\[ = \frac{\pi}{120} = 0.02618; \]
\[ \sigma^2 = E(T^2) - [E(T)]^2 \]
\[ = \int_0^{1/2} \int_{1/2-x}^{1/2} \frac{1}{4} (2x + 2y - 1)(1 - 2x)(1 - 2y) \frac{2}{x} \, dy \, dx - \left[ \frac{\pi}{120} \right]^2 \]
\[ = \frac{1}{1152} - \frac{\pi^2}{14400} = 0.00018267. \]

Here is some Maple code to simulate 5000 areas of random triangles:

```maple
> for k from 1 to 5000 do
>   a := rng();
>   b := rng();
>   X := a/2;
>   Y := X*b + 1/2 - X;
>   Z := 1 - X - Y;
>   TT(k) := 1/4*sqrt((2*X + 2*Y - 1)*(1 - 2*X)*(1 - 2*Y));
> od:
> T := [seq(TT(k), k = 1 .. 5000)]:
> tbar := Mean(T);
> tvar := Variance(T);
> tbar := 0.02611458560
> tvar := 0.0001812722807
```

4.4 The Bivariate Normal Distribution

4.4-2  \[ q(x, y) = \frac{\left[ y - \mu_Y - \rho \sigma_Y / \sigma_X (x - \mu_X) \right]^2}{\sigma_Y^2 (1 - \rho^2)} + \frac{(x - \mu_X)^2}{\sigma_X^2} \]
\[ = \frac{1}{1 - \rho^2} \left[ \frac{(y - \mu_Y)^2}{\sigma_Y^2} - \frac{2 \rho (x - \mu_X)(y - \mu_Y)}{\sigma_X \sigma_Y} \right. \]
\[ + \frac{\rho^2 (x - \mu_X)^2}{\sigma_X^2} + (1 - \rho^2) \frac{(x - \mu_X)^2}{\sigma_X^2} \]
\[ = \frac{1}{1 - \rho^2} \left[ \frac{(x - \mu_X)^2}{\sigma_X^2} - 2 \rho \frac{x - \mu_X}{\sigma_X} \frac{y - \mu_Y}{\sigma_Y} + \frac{(y - \mu_Y)^2}{\sigma_Y^2} \right] \]

4.4-4  (a) \[ E(Y \mid X = 72) = 80 + \frac{5}{13} \left( \frac{13}{10} \right) (72 - 70) = 81; \]
(b) \[ \text{Var}(Y \mid X = 72) = 169 \left[ 1 - \left( \frac{5}{13} \right)^2 \right] = 144; \]
(c) \[ P(Y \leq 84 \mid X = 72) = P \left( Z \leq \frac{84 - 81}{12} \right) = \Phi(0.25) = 0.5987. \]

4.4-6  (a) \[ P(18.5 < Y < 25.5) = \Phi(0.8) - \Phi(-1.2) = 0.6730; \]
(b) \[ E(Y \mid x) = 22.7 + 0.78(3.5/4.2)(x - 22.7) = 0.65x + 7.945; \]
(c) \[ \text{Var}(Y \mid x) = 12.25(1 - 0.78^2) = 4.7971; \]
\( P(18.5 < Y < 25.5 \mid X = 23) = \Phi(1.189) - \Phi(-2.007) = 0.8828 - 0.0224 = 0.8604; \)
\( P(18.5 < Y < 25.5 \mid X = 25) = \Phi(0.596) - \Phi(-2.60) = 0.7244 - 0.0047 = 0.7197. \)

**Figure 4.4–6:** Conditional p.d.f.s of \( Y \), given \( x = 21, 23, 25 \)

**4.4–8** (a) \( P(13.6 < Y < 17.2) = \Phi(0.55) - \Phi(-0.35) = 0.3456; \)
\( E(Y \mid x) = 15 + 0(4/3)(x - 10) = 15; \)
\( \text{Var}(Y \mid x) = 16(1 - 0^2) = 16; \)
\( P(13.6 < Y < 17.2 \mid X = 9.1) = 0.3456. \)

**4.4–10** (a) \( P(2.80 \leq Y \leq 5.35) = \Phi(1.50) - \Phi(0) = 0.4332; \)
\( E(Y \mid X = 82.3) = 2.80 + (-0.57) \left( \frac{1.7}{10.5} \right) (82.3 - 72.30) = 1.877; \)
\( \text{Var}(Y \mid X = 82.3) = 2.89[1 - (-0.57)^2] = 1.9510; \)
\( P(2.76 \leq Y \leq 5.34 \mid X = 82.3) = \Phi(2.479) - \Phi(0.632) \)
\( = 0.9934 - 0.7363 = 0.2571. \)

**4.4–12** (a) \( P(0.205 \leq Y \leq 0.805) = \Phi(1.57) - \Phi(1.17) = 0.0628; \)
\( \mu_{Y \mid X=20} = -1.55 - 0.60 \left( \frac{1.5}{4.5} \right) (20 - 15) = -2.55 : \)
\( \sigma^2_{Y \mid X=20} = 1.5^2[1 - (-0.60)^2] = 1.44; \)
\( \sigma_{Y \mid X=20} = 1.2; \)
\( P(0.21 \leq Y \leq 0.81 \mid X = 20) = \Phi(2.8) - \Phi(2.3) = 0.0081. \)

**4.4–14** (a) \( E(Y \mid X = 15) = 1.3 + 0.8 \left( \frac{0.1}{2.5} \right) (15 - 14.1) = 1.3288; \)
\( \text{Var}(Y \mid X = 15) = 0.1^2(1 - 0.8^2) = 0.0036; \)
\( P(Y > 1.4 \mid X = 15) = 1 - \Phi \left( \frac{1.4 - 1.3288}{0.06} \right) = 0.031; \)
\( E(X \mid Y = 1.4) = 14.1 + 0.8 \left( \frac{2.5}{0.1} \right) (1.4 - 1.3) = 16.1; \)
\( \text{Var}(X \mid Y = 1.4) = 2.5^2(1 - 0.8^2) = 2.25; \)
\( P(X > 15 \mid Y = 1.4) = 1 - \Phi \left( \frac{15 - 16.1}{1.5} \right) = 1 - \Phi(-0.7333) = 0.7683. \)
Chapter 5

Distributions of Functions of Random Variables

5.1 Distributions of Functions of a Random Variable

5.1–2 Here \( x = \sqrt{y} \), \( D_y(x) = 1/2\sqrt{y} \) and \( 0 < x < \infty \) maps onto \( 0 < y < \infty \). Thus

\[
g(y) = \sqrt{y} \left| \frac{1}{2\sqrt{y}} \right| = \frac{1}{2} e^{-y/2}, \quad 0 < y < \infty.
\]

5.1–4 (a)

\[
F(x) = \begin{cases} 
0, & x < 0, \\
\int_0^x 2t \, dt = x^2, & 0 \leq x < 1, \\
1, & 1 \leq x,
\end{cases}
\]

(b) Let \( y = x^2 \); so \( x = \sqrt{y} \). Let \( Y \) be \( U(0, 1) \); then \( X = \sqrt{Y} \) has the given \( x \)-distribution.

(c) Repeat the procedure outlined in part (b) 10 times.

(d) Order the 10 values of \( x \) found in part (c), say \( x_1 < x_2 < \cdots < x_{10} \) and plot the 10 points \( (x_i, \sqrt{i/11}) \), \( i = 1, 2, \ldots, 10 \), where \( 11 = n + 1 \).

5.1–6 It is easier to note that

\[
\frac{dy}{dx} = \frac{e^{-x}}{(1 + e^{-x})^2} \quad \text{and} \quad \frac{dx}{dy} = \frac{(1 + e^{-x})^2}{e^{-x}}.
\]

Say the solution of \( x \) in terms of \( y \) is given by \( x^* \). Then the p.d.f. of \( Y \) is

\[
g(y) = \frac{e^{-x^*}}{(1 + e^{-x^*})^2} \left| \frac{(1 + e^{-x^*})^2}{e^{-x^*}} \right| = 1, \quad 0 < y < 1,
\]

as \( -\infty < x < \infty \) maps onto \( 0 < y < 1 \). Thus \( Y \) is \( U(0, 1) \).
5.1–8 \[ x = \left(\frac{y}{5}\right)^{10/7} \]
\[
\frac{dx}{dy} = \frac{10}{7} \left(\frac{y}{5}\right)^{3/7} \left(\frac{1}{5}\right)
\]
\[ f(x) = e^{-x}, \quad 0 < x < \infty \]
\[ g(y) = e^{-(y/5)^{10/7}} \left(\frac{2}{7}\right) \left(\frac{1}{5}\right)^{3/7} y^{3/7} \]
\[ = \frac{10}{7} 5^{3/7} e^{-(y/5)^{10/7}}, \quad 0 < y < \infty. \]

(The reason for writing the p.d.f. in that form is because \( Y \) has a Weibull distribution with \( \alpha = 10/7 \) and \( \beta = 5 \).)

5.1–10 Since \( -1 < x < 3 \), we have \( 0 \leq y < 9 \).

When \( 0 < y < 1 \), then
\[
x_1 = -\sqrt{y}, \quad \frac{dx_1}{dy} = \frac{-1}{2\sqrt{y}}; \quad x_2 = \sqrt{y}, \quad \frac{dx_2}{dy} = \frac{1}{2\sqrt{y}}.
\]

When \( 1 < y < 9 \), then
\[
x = \sqrt{y}, \quad \frac{dx}{dy} = \frac{1}{2\sqrt{y}}.
\]

Thus
\[
g(y) = \begin{cases} 
\frac{1}{4}\left|\frac{-1}{2\sqrt{y}}\right| + \frac{1}{4}\left|\frac{1}{2\sqrt{y}}\right| = \frac{1}{4\sqrt{y}} & 0 < y < 1, \\
\frac{1}{4}\left|\frac{1}{2\sqrt{y}}\right| = \frac{1}{8\sqrt{y}} & 1 \leq y < 9.
\end{cases}
\]

5.1–12 \[ E(X) = \int_{-\infty}^{\infty} \frac{x}{\pi(1+x^2)} \, dx \]
\[ = \lim_{a \to -\infty} \left[ \frac{1}{2\pi} \ln(1+x^2) \right]_a^0 + \lim_{b \to +\infty} \left[ \frac{1}{2\pi} \ln(1+x^2) \right]_0^b \]
\[ = \frac{1}{2\pi} \left[ \lim_{a \to -\infty} \left\{ -\ln(1+a^2) \right\} + \lim_{b \to +\infty} \ln(1+b^2) \right]. \]

\( E(X) \) does not exist because neither of these limits exists.

5.1–14 \( X \) is \( N(0, 1) \) and \( Y = |X| \). Let
\[
x_1 = -y, \quad -\infty < x_1 < 0, \]
\[
x_2 = y, \quad 0 < x_2 < \infty.
\]

Then
\[
\frac{dx_1}{dy} = -1 \quad \text{and} \quad \frac{dx_2}{dy} = 1.
\]

Thus the p.d.f. of \( Y \) is
\[
g(y) = \frac{1}{\sqrt{2\pi}} e^{-(-y^2)} - 1 + \frac{1}{\sqrt{2\pi}} e^{-y^2} |1| = \frac{2}{\sqrt{2\pi}} e^{-y^2}, \quad 0 < y < \infty.
\]
5.2 Transformations of Two Random Variables

5.2-2 (a) The joint p.d.f. of $X_1$ and $X_2$ is

$$f(x_1, x_2) = \frac{1}{\Gamma\left(\frac{r_1}{2}\right) \Gamma\left(\frac{r_2}{2}\right) 2^{(r_1+r_2)/2}} x_1^{r_1/2-1} x_2^{r_2/2-1} e^{-(x_1+x_2)/2},$$

$$0 < x_1 < \infty, \quad 0 < x_2 < \infty.$$

Let $Y_1 = (X_1/r_1)/(X_2/r_2)$ and $Y_2 = X_2$. The Jacobian of the transformation is $(r_1/r_2)y_2$. Thus

$$g(y_1, y_2) = \frac{1}{\Gamma\left(\frac{r_1}{2}\right) \Gamma\left(\frac{r_2}{2}\right) 2^{(r_1+r_2)/2}} \left(\frac{r_1}{r_2}\right)^{r_1/2} x_1^{r_1/2-1} x_2^{r_2/2-1} e^{-(y_2/2)(r_1, y_1/r_2 + 1)} \left(\frac{r_1 y_1}{r_2}\right),$$

$$0 < y_1 < \infty, \quad 0 < y_2 < \infty.$$

(b) The marginal p.d.f. of $Y_1$ is $g_1(y_1) = \int_0^\infty g(y_1, y_2) dy_2$.

Make the change of variables $w = \frac{y_2}{2} \left(\frac{r_1 y_1}{r_2} + 1\right)$. Then

$$g_1(y_1) = \frac{\Gamma\left(\frac{r_1 + r_2}{2}\right) \left(\frac{r_1}{r_2}\right)^{r_1/2} y_1^{r_1/2-1}}{\Gamma\left(\frac{r_1}{2}\right) \Gamma\left(\frac{r_2}{2}\right) \left(1 + \frac{r_1 y_1}{r_2}\right)^{(r_1+r_2)/2}} \cdot 1, \quad 0 < y_1 < \infty.$$

5.2-4 (a) $F_{0.05}(9, 24) = 2.30$;

(b) $F_{0.95}(9, 24) = \frac{1}{F_{0.05}(24, 9)} = 1.290 = 0.3448$;

(c) $P(W < 0.277) = P\left(\frac{1}{W} > \frac{1}{0.277}\right) = P\left(\frac{1}{W} > 3.61\right) = 0.025$;

$P(0.277 \leq W \leq 2.70) = P(W \leq 2.70) - P(W \leq 0.277) = 0.975 - 0.025 = 0.95$.

5.2-6

$$F(w) = P\left(\frac{X_1}{X_1 + X_2} \leq w\right), \quad 0 < w < 1$$

$$= \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \int_0^\infty \int_{(1-w)x_1/w}^\infty x_1^{\alpha-1} x_2^{\beta-1} e^{-(x_1+x_2)/\theta} \frac{dx_1 dx_2}{\theta^{\alpha+\beta}}$$

$$f(w) = F'(w) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \int_0^\infty \frac{x_1^{\alpha-1} (1-w)x_1/w)^{\beta-1} e^{-(x_1+(1-w)x_1/w)/\theta} \left(-\frac{1}{w^2}\right) x_1 dx_1$$

$$= \frac{1}{\Gamma(\alpha + \beta)} \frac{(1-w)^{\beta-1}}{w^{\beta+1}} \int_0^\infty \frac{x_1^{\alpha-1} e^{-x_1/\theta w}}{\theta^{\alpha+\beta}} dx_1$$

$$= \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha + \beta)} w^{\beta+1} \frac{(1-w)^{\beta-1}}{\theta^{\alpha+\beta}}$$

$$= \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} w^{\alpha-1}(1-w)^{\beta-1}, \quad 0 < w < 1.$$
5.2-8 (a) \[ E(X) = \int_0^1 x \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1} \, dx \]
\[ = \frac{\Gamma(\alpha + \beta)\Gamma(\alpha + 1)}{\Gamma(\alpha)\Gamma(\alpha + \beta + 1)} \int_0^1 \frac{\Gamma(\alpha + 1 + \beta)}{\Gamma(\alpha + 1)\Gamma(\beta)} x^{\alpha+1-1} (1-x)^{\beta-1} \, dx \]
\[ = \frac{(\alpha)\Gamma(\alpha)\Gamma(\alpha + \beta)}{(\alpha + \beta)\Gamma(\alpha + \beta + 1)\Gamma(\alpha)} \]
\[ = \frac{\alpha}{\alpha + \beta}. \]
\[ E(X^2) = \frac{\Gamma(\alpha + \beta)\Gamma(\alpha + 2)}{\Gamma(\alpha)\Gamma(\alpha + 2 + \beta)} \int_0^1 \frac{\Gamma(\alpha + 2 + \beta)}{\Gamma(\alpha + 2)\Gamma(\beta)} x^{\alpha+2-1} (1-x)^{\beta-1} \, dx \]
\[ = \frac{(\alpha + 1)\alpha}{(\alpha + \beta + 1)(\alpha + \beta)}. \]
Thus \[ \sigma^2 = \frac{\alpha(\alpha + 1)}{(\alpha + \beta + 1)(\alpha + \beta)} - \frac{\alpha^2}{(\alpha + \beta)^2} = \frac{\alpha\beta}{(\alpha + \beta + 1)(\alpha + \beta)^2}. \]

(b) \[ f(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1}. \]
\[ f'(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \left[(\alpha - 1)x^{\alpha-2} (1-x)^{\beta-1} - (\beta - 1)x^{\alpha-1} (1-x)^{\beta-2}\right]. \]
Set \( f'(x) \) equal to zero and solve for \( x \):
\[ \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-2} (1-x)^{\beta-2} [(\alpha - 1)(1-x) - (\beta - 1)x] = 0 \]
\[ \alpha - \alpha x - 1 + x - \beta x + x = 0 \]
\[ (\alpha + \beta - 2)x = \alpha - 1 \]
\[ x = \frac{\alpha - 1}{\alpha + \beta - 2}. \]

5.2-10 Use integration by parts two times to show
\[ \int_0^p \frac{6!}{3!2!} y^3 (1-y)^2 \, dy = \left[ \left( \frac{6}{4} \right) y^4 (1-y)^2 + \left( \frac{6}{5} \right) y^5 (1-y) + \left( \frac{6}{6} \right) y^6 (1-y)^0 \right]_0^p \]
\[ = \sum_{y=4}^6 \binom{n}{y} p^y (1-p)^{6-y} . \]

5.2-12 (a) \( w_1 = 2x_1 \) and \( \frac{dw_1}{dx_1} = 2. \) Thus
\[ f(x_1) = \frac{2}{\pi(1+4x_1^2)}, \quad -\infty < x_1 < \infty. \]

(b) For \( x_2 = y_1 - y_2, \ x_1 = y_2, \ |J| = 1. \) Thus
\[ g(y_1, y_2) = f(y_2) f(y_1 - y_2), \quad -\infty < y_i < \infty, \ i = 1, 2. \]

(c) \( g_1(y_1) = \int_{-\infty}^\infty f(y_2) f(y_1 - y_2) \, dy_2. \)
Distributions of Two Random Variables

(d) \[ g_1(y_1) = \int_{-\infty}^{\infty} \frac{2}{\pi[1 + 4y_2^2]} \cdot \frac{2}{\pi[1 + 4(y_1 - y_2)^2]} \, dy_2 = \int_{-\infty}^{\infty} h(y_2) \, dy_2 \]

\[ = \frac{4}{\pi^2} \int_{-\infty}^{\infty} \frac{1}{[1 + 2iy_2][1 - 2iy_2]} \cdot \frac{1}{[1 + 2i(y_1 - y_2)][1 - 2i(y_1 - y_2)]} \, dy_2 \]

\[ = \frac{4}{\pi^2} \int_{-2i}^{2i} \frac{1}{y_2 - i} \cdot \frac{1}{y_2 + i} \cdot \frac{1}{y_2 + (y_1 - i)} \cdot \frac{1}{y_2 - (y_1 + i)} \, dy_2 \]

\[ = \frac{4(2\pi i)}{\pi^2} \left[ \text{Res} \left( h(y_2); y_2 = \frac{i}{2} \right) + \text{Res} \left( h(y_2); y_2 = y_1 + \frac{i}{2} \right) \right] \]

\[ = \frac{8\pi i}{\pi^2} \frac{1}{16} \left[ \frac{1}{i} \cdot \frac{1}{y_1 - y_1} \cdot \frac{1}{y_1 + i} \cdot \frac{1}{y_1 + i} \right] \]

\[ = \frac{1}{2\pi} \cdot \frac{1}{y_1} \left[ \frac{1}{y_1 - i} + \frac{1}{y_1 + i} \right] = \frac{1}{2\pi} \cdot \frac{1}{y_1} \left[ \frac{y_1 + i + y_1 - i}{(y_1 - i)(y_1 + i)} \right] \]

\[ = \frac{1}{\pi(1 + y_1^2)}. \]

A Maple solution for Exercise 5.2-12:

\[ > f := x -> 2/Pi/(1 + 4*x^2); \]
\[ f := x \rightarrow \frac{2}{\pi (1 + 4 x^2)} \]

\[ > \text{simplify}(\text{int}(f(y[2])*f(y[1]-y[2]),y[2]=-\infty..\infty)); \]
\[ \frac{1}{\pi (1 + y_1^2)} \]

A Mathematica solution for Exercise 5.2-12:

\[ \text{In}[1]:= \]
\[ f[x_] := 2/(Pi*(1 + 4(x)^2)) \]
\[ g[y1_,y2_] := f[y2]*f[y1-y2] \]

\[ \text{In}[3]:= \]
\[ \text{Integrate}[g[y1,y2], \{y2, -\infty, \infty\}] \]
\[ \frac{1}{\pi (1 + y_1^2)} \]

5.2-14 The joint p.d.f. is

\[ h(x, y) = \frac{x}{5^y} e^{-(x+y)/5}, \quad 0 < x < \infty, \quad 0 < y < \infty; \]

\[ z = \frac{x}{y}, \quad w = y \]
\[ x = zw, \quad y = w \]

The Jacobian is

\[ J = \begin{vmatrix} w & z \\ 0 & 1 \end{vmatrix} = w; \]
The joint p.d.f. of $Z$ and $W$ is
\[
f(z, w) = \frac{2w}{5^3} e^{-(z+1)w/5}w, \quad 0 < z < \infty, \; 0 < w < \infty;
\]

The marginal p.d.f. of $Z$ is
\[
f_1(z) = \int_0^\infty \frac{2w}{5^3} e^{-(z+1)w/5}w \, dw
\]
\[= \frac{\Gamma(3)z \left( \frac{5}{z+1} \right)^3}{5^3} \int_0^\infty w^{3-1} e^{-w/(5(z+1))} \, dw
\]
\[= \frac{2z}{(z+1)^3}, \quad 0 < z < \infty.
\]

5.2-16 $\alpha = 24, \; \beta = 6, \; \gamma = 42$ is reasonable, but other answers around this one are acceptable.

5.3 Several Independent Random Variables

5.3–2 (a) $P(X_1 = 2, X_2 = 4) = \left[ \frac{3!}{2!1!} \left( \frac{1}{2} \right)^2 \left( \frac{1}{2} \right)^1 \right] \left[ \frac{5!}{4!1!} \left( \frac{1}{2} \right)^4 \left( \frac{1}{2} \right)^1 \right]
\[
= \frac{15}{2^8} = \frac{15}{256}.
\]

(b) $\{X_1 + X_2 = 7\}$ can occur in the two mutually exclusive ways: $\{X_1 = 3, X_2 = 4\}$ and $\{X_1 = 2, X_2 = 5\}$. The sum of the probabilities of the two latter events is
\[
\left[ \frac{3!}{3!0!} \left( \frac{1}{2} \right)^3 \right] \left[ \frac{5!}{4!1!} \left( \frac{1}{2} \right)^5 \right] + \left[ \frac{3!}{2!1!} \left( \frac{1}{2} \right)^3 \right] \left[ \frac{5!}{5!0!} \left( \frac{1}{2} \right)^5 \right] = \frac{5 + 3}{2^8} = \frac{1}{32}.
\]

5.3–4 (a) $\left( \int_{0.5}^{1.0} 2e^{-2x_1} \, dx_1 \right) \left( \int_{0.7}^{1.2} 2e^{-2x_2} \, dx_2 \right) = (e^{-1} - e^{-2})(e^{-1.4} - e^{-2.4})$
\[= (0.368 - 0.135)(0.247 - 0.091)
\]
\[= (0.233)(0.156) = 0.036.
\]

(b) $E(X_1) = E(X_2) = 0.5,$
\[E[X_1(X_2 - 0.5)^2] = E(X_1)Var(X_2) = (0.5)(0.25) = 0.125.
\]

5.3–6 $E(X) = \int_0^1 x6x(1-x) \, dx = \int_0^1 (6x^2 - 6x^3) \, dx = 2x^3 - \left( \frac{3}{2} \right)x^4 \bigg|_0^1 = \frac{1}{2};$
\[E(X^2) = \int_0^1 (6x^3 - 6x^4) \, dx = \left[ \left( \frac{3}{2} \right)x^4 - \left( \frac{6}{5} \right)x^5 \right]_0^1 = \frac{3}{10}.
\]

Thus
\[
\mu_x = \frac{1}{2}; \; \sigma_x^2 = \frac{3}{10} - \frac{1}{4} = \frac{1}{20}, \text{ and}
\]
\[
\mu_x = \frac{1}{2} + \frac{1}{2} = 1; \; \sigma_x^2 = \frac{1}{20} + \frac{1}{20} = \frac{1}{10}.
\]
5.3–8 Let \( Y = \max(X_1, X_2) \). Then
\[
G(y) = [P(X \leq y)]^2
= \left[ \int_1^y \frac{4}{x^5} \, dx \right]^2
= \left[ 1 - \frac{1}{y^4} \right]^2, \quad 1 < y < \infty
\]
\[
g(y) = G'(y)
= 2 \left( 1 - \frac{1}{y^4} \right) \left( \frac{1}{y^5} \right), \quad 1 < y < \infty;
\]
\[
E(Y) = \int_1^\infty y \cdot 2 \left( 1 - \frac{1}{y^4} \right) \left( \frac{4}{y^5} \right) \, dy
= \int_1^\infty 8 [y^{-4} - y^{-8}] \, dy
= \frac{32}{21}.
\]

5.3–10 (a) \( P(X_1 = 1)P(X_2 = 3)P(X_3 = 1) = \left( \frac{3}{4} \right) \left[ \left( \frac{3}{4} \right) \left( \frac{1}{4} \right) \right]^2 \left( \frac{3}{4} \right) = \frac{27}{1024} \);

(b) \( 3P(X_1 = 3, X_2 = 1, X_3 = 1) + 3P(X_1 = 2, X_2 = 2, X_3 = 1) =
\]
\[3 \left( \frac{27}{1024} \right) + 3 \left( \frac{27}{1024} \right) = \frac{162}{1024};\]

(c) \( P(Y \leq 2) = \left( \frac{3}{4} + \frac{3}{4} \cdot \frac{1}{4} \right)^3 = \left( \frac{15}{16} \right)^3.\)

5.3–12 \( P(1 < \min X_i) = [P(1 < X_i)]^3 = \left( \int_1^\infty e^{-x} \, dx \right)^3 = e^{-3} = 0.05.\)

5.3–14 (a)
(b) Note that \( P(X = x) \) is the difference of the areas of two squares. Thus

\[
P(X = x) = \left(1 - \frac{1}{2^x}\right)^2 - \left(1 - \frac{1}{2^{x-1}}\right)^2
= 1 - \frac{2}{2^x} + \frac{1}{2^{2x}} - 1 + \frac{2}{2^{x-1}} - \frac{1}{2^{2x-2}}
= \frac{-2^{x+1} + 1 + 2^{2+x} - 4}{2^{2x}}
= \frac{2^{x+1} - 3}{2^x}
= \frac{2}{2^x} - \frac{3}{2^x}, \quad x = 1, 2, 3, \ldots
\]

(c) \[\sum_{x=1}^{\infty} \frac{2}{2^x} - \frac{3}{2^{2x}} = \frac{1}{1 - 1/2} - \frac{3/4}{1 - 1/4} = 2 - 1 = 1;\]

(d) \[\mu = \sum_{x=1}^{\infty} \left[ \frac{2x}{2^x} - \frac{3x}{2^{2x}} \right]
= \sum_{x=1}^{\infty} x \left(\frac{1}{2}\right)^{x-1} - \sum_{x=1}^{\infty} 3 \left(\frac{1}{4}\right)^{x-1}
= \frac{1}{(1 - 1/2)^2} - \frac{3/4}{(1 - 1/4)^2}
= 4 - \frac{4}{3} = \frac{8}{3};\]

(e) \[
E[X(X - 1)] = \sum_{x=1}^{\infty} \left[ \frac{2x(x-1)}{2^x} - \frac{3x(x-1)}{2^{2x}} \right]
= \frac{1}{4} \sum_{x=2}^{\infty} 2x(x-1) \left(\frac{1}{2}\right)^{x-2} - \frac{1}{16} \sum_{x=2}^{\infty} 3x(x-1) \left(\frac{1}{4}\right)^{x-2}
= \frac{2(2/4)}{(1 - 1/2)^3} - \frac{2(3/16)}{(1 - 1/4)^3}
= 8 - \frac{8}{9} = \frac{64}{9};
\]

So the variance is

\[\sigma^2 = E[X(X - 1)] + E(X) - \mu^2 = \frac{64}{9} + \frac{8}{3} - \frac{64}{9} = \frac{8}{3};\]

5.3–16 \[P(Y > 1000) = P(X_1 > 1000)P(X_2 > 1000)P(X_3 > 1000)
= e^{-1}e^{-2/3}e^{-1/2}
= e^{-13/6} = 0.1146.\]

5.3–18 \[P(\text{max} > 8) = 1 - P(\text{max} \leq 8)
= \left[ \sum_{x=0}^{8} \binom{10}{x} (0.7)^x (0.3)^{10-x} \right]^3
= 1 - (1 - 0.1493)^3 = 0.3844.\]
5.3–20 \[ G(y) = P(Y \leq y) = P(X_1 \leq y) \cdots P(X_8 \leq y) = [P(X \leq y)]^8 \]

\[ [y^{10}]^8 = y^{80}, \quad 0 < y < 1; \]

\[ P(0.9999 < Y < 1) = G(1) - G(0.9999) = 1 - 0.9999^{80} = 0.008. \]

5.3–22 Denote the three lifetimes by \( X_1, X_2, X_3 \) and let \( Y = X_1 + X_2 + X_3 \).

\[ E(Y) = E(X_1 + X_2 + X_3) = E(X_1) + E(X_2) + E(X_3) = 3 \cdot 2 \cdot 2 = 12. \]

\[ \text{Var}(X_1 + X_2 + X_3) = \text{Var}(X_1) + \text{Var}(X_2) + \text{Var}(X_3) = 3 \cdot 2 \cdot 2^2 = 24. \]

5.4 The Moment-Generating Function Technique

5.4–2 \[ M_Y(t) = E[e^{t(X_1+X_2)}] = E[e^{tX_1}]E[e^{tX_2}] \]

\[ = (q + pe^t)^{n_1}(q + pe^t)^{n_2} = (q + pe^t)^{n_1+n_2}. \]

Thus \( Y \) is \( b(n_1 + n_2, p) \).

5.4–4 \[ E[e^{t(X_1 + \cdots + X_n)}] = \prod_{i=1}^{n} E[e^{tX_i}] = \prod_{i=1}^{n} e^{\mu_i(e^t-1)} \]

\[ = e^{(\mu_1+\mu_2+\cdots+\mu_n)(e^t-1)}, \]

the moment generating function of a Poisson random variable with mean \( \mu_1 + \mu_2 + \cdots + \mu_n \).

5.4–6 (a) \[ E[e^{tY}] = E[e^{t(X_1+X_2+X_3+X_4+X_5)}] \]

\[ = E[e^{tX_1}e^{tX_2}e^{tX_3}e^{tX_4}e^{tX_5}] \]

\[ = E[e^{tX_1}]E[e^{tX_2}]E[e^{tX_3}]E[e^{tX_4}]E[e^{tX_5}] \]

\[ = \frac{(1/3)e^t}{1 - (2/3)e^t} \frac{(1/3)e^t}{1 - (2/3)e^t} \cdots \frac{(1/3)e^t}{1 - (2/3)e^t} \]

\[ = \left[ \frac{(1/3)e^t}{1 - (2/3)e^t} \right]^5, \quad t < -\ln(1 - 1/3). \]

(b) So \( Y \) has a negative binomial distribution with \( p = 1/3 \) and \( r = 5 \).

5.4–8 \[ E[e^{tW}] = E[e^{t(X_1+X_2+\cdots+X_9)}] = E[e^{tX_1}]E[e^{tX_2}] \cdots E[e^{tX_9}] \]

\[ = \left[ 1/(1 - \theta t) \right]^h = 1/(1 - \theta t)^h, \quad t < 1/\theta, \]

the moment generating function for the gamma distribution with mean \( h\theta \).

5.4–10 (a) \[ E[e^{tX}] = (1/4)(e^{3t} + e^{1t} + e^{2t} + e^{3t}); \]

(b) \[ E[e^{tY}] = (1/4)(e^{3t} + e^{4t} + e^{8t} + e^{12t}); \]

(c) \[ E[e^{tW}] = E[e^{t(X+Y)}] \]

\[ = E[e^{tX}]E[e^{tY}] \]

\[ = (1/16)(e^{3t} + e^{1t} + e^{2t} + e^{3t})(e^{3t} + e^{4t} + e^{8t} + e^{12t}) \]

\[ = (1/16)(e^{3t} + e^{1t} + e^{2t} + e^{3t} + \cdots e^{15t}); \]

(d) \[ P(W = w) = 1/16, \quad w = 0, 1, 2, \ldots, 15. \]
5.4–12 \( g(w) = \frac{1}{12}, \) \( w = 0, 1, 2, \ldots, 11, \) because, for example,

\[
P(W = 3) = P(X = 1, Y = 2) = \left( \frac{1}{6} \right) \left( \frac{1}{2} \right) = \frac{1}{12}.
\]

(b) \( h(w) = \frac{1}{36}, \) \( w = 0, 1, 2, \ldots, 35, \) because, for example,

\[
P(W = 7) = P(X = 1, Y = 6) = \left( \frac{1}{6} \right) \left( \frac{1}{6} \right) = \frac{1}{36}.
\]

5.4–14 (a) Let \( X_1, X_2, X_3 \) equal the digit that is selected on draw 1, 2, and 3, respectively. Then

\[
f(x_i) = 1/10, \quad x_i = 0, 1, 2, \ldots, 9.
\]

Let \( W = X_1 + X_2 + X_3. \)

\[
P(W = 0) = 1/1000;
\]

\[
P(W = 1) = 3/1000;
\]

\[
P(W = 2) = 6/1000;
\]

\[
P(W = 3) = 10/1000;
\]

\( \$500 \cdot P(W = 0) - \$1 = \$500/1000 - \$1 = -50 \) cents

\( \$166 \cdot P(W = 1) - \$1 = \$498/1000 - \$1 = -50.2 \) cents

\( \$83 \cdot P(W = 2) - \$1 = \$498/1000 - \$1 = -50.2 \) cents;

(b) \( \$50 \cdot P(W = 3) - \$1 = \$500/1000 - \$1 = -50 \) cents;

(c) Let \( Y = X_1 + X_2 + X_3 + X_4, \) the sum in the 4-digit game.

\[
P(Y = 0) = 1/10,000;
\]

\[
P(Y = 1) = 1/2,500;
\]

\[
P(Y = 2) = 1/1,000;
\]

\[
P(Y = 3) = 1/500;
\]

\( \$5,000 \cdot P(Y = 0) - \$1 = \$5,000/10,000 - \$1 = -50 \) cents

\( \$1,250 \cdot P(Y = 1) - \$1 = \$1,250/2,500 - \$1 = -50 \) cents

\( \$500 \cdot P(Y = 2) - \$1 = \$500/1,000 - \$1 = -50 \) cents;

(d) \( \$250 \cdot P(Y = 3) - \$1 = \$250/500 - \$1 = -50 \) cents.

5.4–16 Let \( X_1, X_2, X_3 \) be the number of accidents in weeks 1, 2, and 3, respectively. Then

\( Y = X_1 + X_2 + X_3 \) is Poisson with mean \( \lambda = 6 \) and

\[
P(Y = 7) = 0.744 - 0.606 = 0.138.
\]

5.4–18 Let \( X_1, X_2, X_3, X_4 \) be the number of sick days for employee \( i, \) \( i = 1, 2, 3, 4, \) respectively. Then \( Y = X_1 + X_2 + X_3 + X_4 \) is Poisson with mean \( \lambda = 8 \) and

\[
P(Y > 10) = 1 - P(Y \leq 10) = 1 - 0.0816 = 0.184.
\]
5.4–20 Let $X_i$ equal the number of cracks in mile $i$, $i = 1, 2, \ldots, 40$. Then

$$Y = \sum_{i=1}^{40} X_i$$

is Poisson with mean $\lambda = 20$.

It follows that

$$P(Y < 15) = P(Y \leq 14) = \sum_{y=0}^{14} \frac{20^y e^{-20}}{y!} = 0.1049.$$  

The final answer was calculated using Minitab.

5.4–22 $Y = X_1 + X_2 + X_3 + X_4$ has a gamma distribution with $\alpha = 6$ and $\theta = 10$. So

$$P(Y > 90) = \int_{90}^{\infty} \frac{1}{\Gamma(6)10^6} y^{6-1} e^{-y/10} dy = 1 - 0.8843 = 0.1157.$$  

The final answer was calculated using Minitab.

5.5 Random Functions Associated with Normal Distributions

5.5–2

![Graph of normal distributions](image)

Figure 5.5–2: $X$ is $N(50, 36)$, $\overline{X}$ is $N(50, 36/n)$, $n = 9, 36$

5.5–4 (a) $P(X < 6.0171) = P(Z < -1.645) = 0.05$;

(b) Let $W$ equal the number of boxes that weigh less than 6.0171 pounds. Then $W$ is $b(9, 0.05)$ and $P(W \leq 2) = 0.9916$;

(c) $P(\overline{X} \leq 6.035) = P\left(Z \leq \frac{6.035 - 6.05}{0.02/\sqrt{3}}\right) = P(Z \leq -2.25) = 0.0122.$
5.5–6 (a)  

![Figure 5.5–6: $N(43.04, 14.89)$ and $N(47.88, 2.19)$ p.d.f.s](image)

(b) The distribution of $X_1 - X_2$ is $N(4.84, 17.08)$. Thus

$$P(X_1 > X_2) = P(X_1 - X_2 > 0) = P\left( Z > \frac{-4.84}{\sqrt{17.08}} \right) = 0.8790.$$  

5.5–8 The distribution of $Y$ is $N(3.54, 0.0147)$. Thus

$$P(Y > W) = P(Y - W > 0) = P\left( Z > \frac{-0.30}{\sqrt{0.0147 + 0.092}} \right) = 0.9830.$$  

![Figure 5.5–8: $N(3.22, 0.09^2)$ and $N(3[1.18], 3[0.07^2])$ p.d.f.s](image)
5.5–10 \( X - Y \) is \( N(184.09 - 171.93, 39.37 + 50.88) \);

\[
P(X > Y) = P \left( \frac{X - Y - 12.16}{90.25} > \frac{0 - 12.16}{9.5} \right) = P(Z > -1.28) = 0.8997.
\]

5.5–12 (a) \( E(\overline{X}) = 24.5, \ Var(\overline{X}) = \frac{3.8^2}{8} = 1.805 \),

\[
E(\overline{Y}) = 21.3, \ Var(\overline{Y}) = \frac{2.7^2}{8} = 0.911;
\]

(b) \( N(24.5 - 21.3 = 3.2, 1.805 + 0.911 = 2.716) \);

(c) \( P(\overline{X} > \overline{Y}) = P(\overline{X} - \overline{Y} > 0) = 1 - \Phi \left( \frac{0 - 3.2}{1.648} \right) \)

\[
= 1 - \Phi(-1.94) = \Phi(1.94) = 0.9738.
\]

5.5–14 Let \( Y = X_1 + X_2 + \cdots + X_n \). Then \( Y \) is \( N(800n, 100^2n) \). Thus

\[
P(Y \geq 10000) = 0.90
\]

\[
P \left( \frac{Y - 800n}{100\sqrt{n}} \geq \frac{10000 - 800n}{100\sqrt{n}} \right) = 0.90
\]

\[
-1.282 = \frac{10000 - 800n}{100\sqrt{n}}
\]

\[
800n - 128.2\sqrt{n} - 10000 = 0.
\]

Either use the quadratic formula to solve for \( \sqrt{n} \) or use Maple to solve for \( n \). We find that \( \sqrt{n} = 3.617 \) or \( n = 13.08 \) so use \( n = 14 \) bulbs.

5.5–16 The joint p.d.f. is

\[
f(x_1, x_2) = \frac{1}{\sqrt{2\pi}} e^{-x_1^2/2} \frac{1}{\Gamma(r/2)^{2r/2}} x_2^{r/2 - 1} e^{-x_2^2/2}, \quad -\infty < x_1 < \infty, \ 0 < x_2 < \infty;
\]

\[
y_1 = x_1/\sqrt{x_2/r}, \quad y_2 = x_2
\]

\[
x_1 = y_1\sqrt{y_2/r}, \quad x_2 = y_2
\]

The Jacobian is

\[
J = \begin{vmatrix} \sqrt{y_2/r} & y_1(1/2)y_2^{-1/2}/\sqrt{r} \\ 0 & 1 \end{vmatrix} = \sqrt{y_2/r};
\]

The joint p.d.f. of \( Y_1 \) and \( Y_2 \) is

\[
g(y_1, y_2) = \frac{1}{\sqrt{2\pi}} e^{-y_1^2/2} \frac{1}{\Gamma(r/2)^{2r/2}} y_2^{r/2 - 1} e^{-y_2^2/2} \frac{\sqrt{y_2}}{\sqrt{r}}, \quad -\infty < y_1 < \infty, \ 0 < y_2 < \infty;
\]

The marginal p.d.f. of \( Y_1 \) is

\[
g_1(y_1) = \int_0^\infty \frac{1}{\sqrt{2\pi}} e^{-y_1^2/2} \frac{1}{\Gamma(r/2)^{2r/2}} y_2^{r/2 - 1} e^{-y_2^2/2} \frac{\sqrt{y_2}}{\sqrt{r}} dy_2
\]

\[
= \frac{\Gamma((r + 1)/2)}{\sqrt{\pi r} \Gamma(r/2)} \int_0^\infty \frac{1}{\Gamma((r + 1)/2)^{2(r+1)/2}} y_2^{(r+1)/2 - 1} e^{-y_2^2/2(1+y_1^2/r)} dy_2
\]

Let \( u = y_2 (1 + y_1^2 / r) \). Then \( y_2 = \frac{u}{1 + y_1^2 / r} \) and \( \frac{dy_2}{du} = \frac{1}{1 + y_1^2 / r} \). So

\[
g_1(y_1) = \frac{\Gamma[(r+1)/2]}{\sqrt{\pi} \Gamma(r/2)(1+y_1^2/r)^{(r+1)/2}} \int_0^{\infty} \frac{1}{\Gamma[(r+1)/2]2^{(r+1)/2}} u^{(r+1)/2-1} e^{-u/2} du
\]

\[
= \frac{\Gamma[(r+1)/2]}{\sqrt{\pi} \Gamma(r/2)(1+y_1^2/r)^{(r+1)/2}}, \quad -\infty < y_1 < \infty.
\]

5.5–18 (a) \( t_{0.05}(23) = 1.714; \)

(b) \( t_{0.90}(23) = -t_{0.10}(23) = -1.319; \)

(c) \( P(-2.069 \leq T \leq 2.500) = 0.99 - 0.025 = 0.965. \)

5.5–20 \( T = \frac{X - \mu}{S/\sqrt{n}} \) is \( t \) with \( r = 9 - 1 = 8 \) degrees of freedom.

(a) \( t_{0.025}(8) = 2.306; \)

(b) \( -t_{0.025} \leq \frac{X - \mu}{S/\sqrt{n}} \leq t_{0.025} \)

\( -t_{0.025} \cdot \frac{S}{\sqrt{n}} \leq X - \mu \leq t_{0.025} \cdot \frac{S}{\sqrt{n}} \)

\( -\overline{X} - t_{0.025} \cdot \frac{S}{\sqrt{n}} \leq \mu \leq -\overline{X} + t_{0.025} \cdot \frac{S}{\sqrt{n}} \)

\( \overline{X} - t_{0.025} \cdot \frac{S}{\sqrt{n}} \leq \mu \leq \overline{X} + t_{0.025} \cdot \frac{S}{\sqrt{n}} \)

5.6 The Central Limit Theorem

5.6–2 If \( f(x) = (3/2)x^2; \) \( -1 < x < 1, \)

\[
E(X) = \int_{-1}^{1} x(3/2)x^2 \, dx = 0;
\]

\[
\text{Var}(X) = \int_{-1}^{1} (3/2)x^4 \, dx = \left[ \frac{3}{10} x^5 \right]_{-1}^{1} = \frac{3}{5};
\]

Thus \( P(-0.3 \leq Y \leq 1.5) = P\left( \frac{-0.3 - 0}{\sqrt{15(3/5)}} \leq \frac{Y - 0}{\sqrt{15(3/5)}} \leq \frac{1.5 - 0}{\sqrt{15(3/5)}} \right) \)

\( \approx P(-0.10 \leq Z \leq 0.50) = 0.2313. \)

5.6–4 \( P(39.75 \leq \overline{X} \leq 41.25) = P\left( \frac{39.75 - 40}{\sqrt{8/32}} \leq \frac{\overline{X} - 40}{\sqrt{8/32}} \leq \frac{41.25 - 40}{\sqrt{8/32}} \right) \)

\( \approx P(-0.50 \leq Z \leq 2.50) = 0.6853. \)

5.6–6 (a) \( \mu = \int_{0}^{2} x(1-x/2) \, dx = \left[ \frac{x^2}{2} - \frac{x^3}{6} \right]_0^2 = 2 - \frac{4}{3} = \frac{2}{3}; \)

\( \sigma^2 = \int_{0}^{2} x^2(1-x/2) \, dx - \left( \frac{2}{3} \right)^2 = \left[ \frac{x^3}{3} - \frac{x^4}{8} \right]_0^2 = \frac{4}{9} = \frac{2}{9}. \)
\begin{align*}
(\text{b)} \quad & P\left(\frac{2}{3} \leq \overline{X} \leq \frac{5}{6}\right) = P\left(\frac{\frac{2}{3} - 2}{\sqrt{\frac{2}{5}/18}} \leq \frac{\overline{X} - \frac{2}{3}}{\sqrt{\frac{2}{5}/18}} \leq \frac{\frac{5}{6} - \frac{2}{3}}{\sqrt{\frac{2}{5}/18}}\right) \\
& \approx P(0 \leq Z \leq 1.5) = 0.4332.
\end{align*}

5.6–8 \hspace{1em} (a) \quad & E(\overline{X}) = \mu = 24.43; \\
(b) \quad & \text{Var}(\overline{X}) = \frac{\sigma^2}{n} = \frac{2.20}{30} = 0.0733; \\
(c) \quad & P(24.17 \leq \overline{X} \leq 24.82) \approx P\left(\frac{24.17 - 24.43}{\sqrt{0.0733}} \leq Z \leq \frac{24.82 - 24.43}{\sqrt{0.0733}}\right) \\
& = P(-0.96 \leq Z < 1.44) = 0.7566.

5.6–10 \quad \text{Using the normal approximation,} \quad P(1.7 \leq Y \leq 3.2) = P\left(\frac{1.7 - 2}{\sqrt{4/12}} \leq \frac{Y - 2}{\sqrt{4/12}} \leq \frac{3.2 - 2}{\sqrt{4/12}}\right) \\
& \approx P(-0.52 \leq Z \leq 2.078) = 0.6796.

\text{Using the p.d.f. of } Y, \quad P(1.7 \leq Y \leq 3.2) = \int_{1.7}^{2} [(-1/2)y^3 + 2y^2 - 2y + (2/3)] dy \\
& + \int_{2}^{3} [(1/2)y^3 - 4y^2 + 10y - 22/3] dy \\
& + \int_{3}^{3.2} [(-1/6)y^3 + 2y^2 - 8y + 32/3] dy \\
& = [(1/2)(-1/2)y^4 + (2/3)y^3 - y^2 + (2/3)y]_{1.7} \\
& + [(1/2)y^4 - (4/3)y^3 + 5y^2 - (22/3)y]_{2} \\
& + [(1/24)y^4 + (2/3)y^3 - 4y^2 + (32/3)y]_{3} \\
& = 0.1920 + 0.4583 + 0.0246 = 0.6749.

5.6–12 \quad \text{The distribution of } \overline{X} \text{ is } N(2000, 500^2/25). \quad \text{Thus} \\
\quad P(\overline{X} > 2050) = P\left(\frac{\overline{X} - 2000}{500/5} > \frac{2050 - 2000}{500/5}\right) \approx 1 - \Phi(0.50) = 0.3085.

5.6–14 \quad & E(X + Y) = 30 + 50 = 80; \\
& \text{Var}(X + Y) = \sigma_X^2 + \sigma_Y^2 + 2\rho_{XY}\sigma_X\sigma_Y \\
& = 52 + 64 + 28 = 144; \\
& Z = \sum_{i=1}^{25} (X_i + Y_i) \text{ in approximately } N(25 \cdot 80, 25 \cdot 144). \\
& \text{Thus } P(1970 < Z < 2090) = P\left(\frac{1970 - 2000}{60} < \frac{Z - 2000}{60} < \frac{2090 - 2000}{60}\right) \\
& \approx \Phi(1.5) - \Phi(-0.5) \\
& = 0.9332 - 0.3085 = 0.6247.

5.6–16 \quad \text{Let } X_i \text{ equal the time between sales of ticket } i - 1 \text{ and } i, \text{ for } i = 1, 2, \ldots, 10. \text{ Each } X_i \text{ has a gamma distribution with } \alpha = 3, \theta = 2. \text{ } Y = \sum_{i=1}^{10} X_i \text{ has a gamma distribution with parameters } \alpha_Y = 30, \theta_Y = 2. \text{ Thus} \\
\quad P(Y \leq 60) = \int_{0}^{60} \frac{1}{\Gamma(30)2^\theta} y^{30-1} e^{-y/2} dy = 0.52428 \text{ using Maple.}
The normal approximation is given by
\[
P\left( \frac{Y - 60}{\sqrt{120}} \leq \frac{60 - 60}{\sqrt{120}} \right) \approx \Phi(0) = 0.5000.
\]

5.6–18 We are given that \( Y = \sum_{i=1}^{20} X_i \) has mean 200 and variance 80. We want to find \( y \) so that
\[
P(Y \geq y) < 0.20
\]
\[
P\left( \frac{Y - 200}{\sqrt{80}} > \frac{y - 200}{\sqrt{80}} \right) < 0.20;
\]
We have that
\[
y - \frac{200}{\sqrt{80}} = 0.842
\]
\[
y = 207.5 \uparrow 208 \text{ days.}
\]

5.7 Approximations for Discrete Distributions

5.7–2 (a) \( P(2 < X < 9) = 0.9532 - 0.0982 = 0.8550; \)
(b) \( P(2 < X < 9) = P\left( \frac{2.5 - 5}{2} \leq \frac{X - 25(0.2)}{\sqrt{25(0.2)(0.8)}} \leq \frac{8.5 - 5}{2} \right) \approx P(-1.25 \leq Z \leq 1.75) = 0.8543. \)

5.7–4 \( P(35 \leq X \leq 40) \approx P\left( \frac{34.5 - 36}{3} \leq \frac{Z}{\frac{4.2}{3}} \leq \frac{40.5 - 36}{3} \right) = P(-0.50 \leq Z \leq 1.50) = 0.6247. \)

5.7–6 \( \mu_X = 84(0.7) = 58.8, \ Var(X) = 84(0.7)(0.3) = 17.64, \)
\( P(X \leq 52.5) \approx \Phi\left( \frac{52.5 - 58.8}{4.2} \right) = \Phi(-1.5) = 0.0668. \)

5.7–8 (a) \( P(X < 20.857) = P\left( \frac{X - 21.37}{0.4} < \frac{20.857 - 21.37}{0.4} \right) = P(Z < -1.282) = 0.10. \)
(b) The distribution of \( Y \) is \( b(100, 0.10). \) Thus
\[
P(Y \leq 5) = P\left( \frac{Y - 100(0.10)}{\sqrt{100(0.10)(0.90)}} \leq \frac{5.5 - 10}{3} \right) \approx P(Z \leq -1.50) = 0.0668.
\]
(c) \( P(21.31 \leq X \leq 21.39) \approx P\left( \frac{21.31 - 21.37}{0.4/10} \leq Z \leq \frac{21.39 - 21.37}{0.4/10} \right) = P(-1.50 \leq Z \leq 0.50) = 0.6247. \)

5.7–10 \( P(4776 \leq X \leq 4856) \approx P\left( \frac{4775.5 - 4829}{\sqrt{4829}} \leq Z \leq \frac{4857.5 - 4829}{\sqrt{4829}} \right) \)
\[
= P(-0.77 \leq Z \leq 0.41) = 0.4385.
\]
5.7–12 The distribution of \( Y \) is \( b(1000, 18/38) \). Thus

\[
P(Y > 500) \approx P\left( Z \geq \frac{500.5 - 1000(18/38)}{\sqrt{1000(18/38)(20/38)}} \right) = P(Z \geq 1.698) = 0.0448.
\]

5.7–14 (a) \( E(X) = 100(0.1) = 10 \), \( \text{Var}(X) = 9 \),

\[
P(11.5 < X < 14.5) \approx \Phi\left( \frac{14.5 - 10}{3} \right) - \Phi\left( \frac{11.5 - 10}{3} \right)
\]

\[
= \Phi(1.5) - \Phi(0.5) = 0.9332 - 0.6915 = 0.2417.
\]

(b) \( P(X \leq 14) - P(X \leq 11) = 0.917 - 0.697 = 0.220; \)

(c) \( \sum_{x=12}^{14} \binom{100}{x} (0.1)^x (0.9)^{100-x} = 0.2244. \)

5.7–16 (a) \( E(Y) = 24(3.5) = 84 \), \( \text{Var}(Y) = 24(35/12) = 70 \),

\[
P(Y \geq 85.5) \approx 1 - \Phi\left( \frac{85.5 - 84}{\sqrt{70}} \right) = 1 - \Phi(0.18) = 0.4286;
\]

(b) \( P(Y < 85.5) \approx 1 - 0.4286 = 0.5714; \)

(c) \( P(70.5 < Y < 86.5) \approx \Phi(0.30) - \Phi(-1.61) = 0.6179 - 0.0537 = 0.5642. \)

5.7–18 (a)

![Figure 5.7–18: Normal approximations of the p.d.f.s of \( Y \) and \( Y/100 \), \( p = 0.1, 0.5, 0.8 \)](image)

(b) When \( p = 0.1 \),

\[
P(-1.5 < Y - 10 < 1.5) \approx \Phi\left( \frac{1.5}{3} \right) - \Phi\left( \frac{-1.5}{3} \right) = 0.6915 - 0.3085 = 0.3830;
\]

When \( p = 0.5 \),

\[
P(-1.5 < Y - 50 < 1.5) \approx \Phi\left( \frac{1.5}{5} \right) - \Phi\left( \frac{-1.5}{5} \right) = 0.6179 - 0.3821 = 0.2358;
\]

When \( p = 0.8 \),

\[
P(-1.5 < Y - 80 < 1.5) \approx \Phi\left( \frac{1.5}{4} \right) - \Phi\left( \frac{-1.5}{4} \right) = 0.6462 - 0.3538 = 0.2924.
\]
5.7–20 \( X \) is \( N(0, 0.5^2) \). The probability that one item exceeds 0.98 in absolute value is

\[
P(|X| > 0.98) = 1 - P(-0.98 \leq X \leq 0.98)
\]

\[
= 1 - P\left(\frac{-0.98 - 0}{0.5} \leq \frac{X - 0}{0.5} \leq \frac{0.98 - 0}{0.5}\right)
\]

\[
= 1 - P(-1.96 \leq Z \leq 1.96) = 1 - 0.95 = 0.05
\]

If we let \( Y \) equal the number out of 100 that exceed 0.98 in absolute value, \( Y \) is \( b(100, 0.05) \).

(a) Let \( \lambda = 100(0.05) = 5 \).

\[
P(Y \geq 7) = 1 - P(Y \leq 6) = 1 - 0.762 = 0.238.
\]

(b) \( P(Y \geq 7) = P\left(Y - 5 \leq 6.5 - 5 \right)
\]

\[
\approx P\left(Z \geq 0.688\right)
\]

\[
= 1 - 0.7543 = 0.2447.
\]

(c) \( P(Y \geq 7) = 1 - P(Y \leq 6) = 1 - 0.7660 = 0.2340 \) using Minitab.

5.7–22 (a) Let \( X \) equal the number of matches. Then

\[
f(x) = \binom{20}{x} \binom{60}{4-x} \binom{80}{4}, \quad x = 0, 1, 2, 3, 4.
\]

Thus

\[
f(0) = \frac{97,527}{316,316} = 0.308
\]

\[
f(1) = \frac{34,220}{79,079} = 0.433
\]

\[
f(2) = \frac{16,815}{79,079} = 0.218
\]

\[
f(3) = \frac{3,420}{79,079} = 0.043
\]

\[
f(4) = \frac{969}{316,316} = 0.003.
\]

\[
EP = E(\text{Payoff}) = -1f(0) - 1f(1) + 0f(2) + 4f(3) + 54f(4)
\]

\[
= -\frac{9,797}{24,332} = -0.403;
\]

\[
EDP = E(\text{Double Payoff}) = -1f(0) - 1f(1) + 1f(2) + 9f(3) + 109f(4)
\]

\[
= \frac{2,369}{12,166} = 0.195
\]

(b) The variances and standard deviation for the regular game and the double payoff game, respectively, are
Distributions of Two Random Variables

\[
\text{Var}(\text{Payoff}) = (-1 - EP)^2 f(0) + (-1 - EP)^2 f(1) + (0 - EP)^2 f(2) \\
+ (4 - EP)^2 f(3) + (54 - EP)^2 f(4)
\]

\[
= 78,534,220,095 \\
7,696,600,912
\]

\[\sigma = 3.1943;\]

\[
\text{Var}(\text{DoublePayoff}) = (-1 - EDP)^2 f(0) + (-1 - EDP)^2 f(1) + \\
(1 - EDP)^2 f(2) + (9 - EDP)^2 f(3) + (109 - EDP)^2 f(4)
\]

\[
= 78,534,220,095 \\
1,924,150,228
\]

\[\sigma = 6.3886.\]

\[(c)\] Let \(Y = \sum_{i=1}^{2000} X_i\), the sum of “winnings” in 2000 repetitions of the regular game. The distribution of \(Y\) is approximately

\[
N\left(2000 \left(\frac{9,797}{24,332}\right), 2000 \left(\frac{78,534,220,095}{7,696,600,912}\right)\right) = N(-805.277, 20,407.50742).
\]

\[
P(Y > 0) = P\left(\frac{Y + 805.277}{142.856} > \frac{0.5 + 805.277}{142.856}\right) \approx P(Z > 5.64) = 0.
\]

Let \(W = \sum_{i=1}^{2000} X_i\), the sum of “winnings” in 2000 repetitions of the double payoff game. The distribution of \(W\) is approximately

\[
N\left(2000 \left(\frac{2,369}{12,166}\right), 2000 \left(\frac{78,534,220,095}{1,924,150,228}\right)\right) = N(389.446, 81,630.02966).
\]

\[
P(W > 0) = P\left(\frac{W - 389.446}{285.7097} > \frac{0.5 - 389.446}{285.7097}\right) \approx P(Z > -1.3613) = 0.9133.
\]

\[(d)\] Here are the results of 100 simulations of these two games. The respective sample means are -803.65 and 392.70. The respective sample variances are 19,354.45202 and 77,417.80808. Here are box plots comparing the two games.

Figure 5.7–22: Box plots of 100 simulations of 2000 plays
Here is a histogram of the 100 simulations of 2000 plays of the regular game.

![Histogram of regular game](image1)

*Figure 5.7-22: A histogram of 100 simulations of 2000 plays of the regular game*

Here is a histogram of 100 simulations of 2000 plays of the double payoff (promotion) game.

![Histogram of promotion game](image2)

*Figure 5.7-22: A histogram of 100 simulations of 2000 plays of the promotion game*
Chapter 6

Estimation

6.1 Point Estimation

6.1–2 The likelihood function is

\[ L(\theta) = \left[ \frac{1}{2\pi \theta} \right]^{n/2} \exp \left[ -\sum_{i=1}^{n} \frac{(x_i - \mu)^2}{2\theta} \right], \quad 0 < \theta < \infty. \]

The logarithm of the likelihood function is

\[ \ln L(\theta) = -\frac{n}{2} \ln 2\pi - \frac{n}{2} \ln \theta - \frac{1}{2\theta} \sum_{i=1}^{n} (x_i - \mu)^2. \]

Setting the first derivative equal to zero and solving for \( \theta \) yields

\[
\frac{d \ln L(\theta)}{d\theta} = -\frac{n}{2\theta} + \frac{1}{2\theta^2} \sum_{i=1}^{n} (x_i - \mu)^2 = 0
\]

\[ \theta = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2. \]

Thus

\[ \hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} (X_i - \mu)^2. \]

To see that \( \hat{\theta} \) is an unbiased estimator of \( \theta \), note that

\[ E(\hat{\theta}) = E \left( \frac{\sigma^2}{n} \sum_{i=1}^{n} \frac{(X_i - \mu)^2}{\sigma^2} \right) = \frac{\sigma^2}{n} \cdot n = \sigma^2, \]

since \( (X_i - \mu)^2/\sigma^2 \) is \( \chi^2(1) \) and hence the expected value of each of the \( n \) summands is equal to 1.

6.1–4 (a) \( \bar{x} = 394/7 = 56.2857; \) \( s^2 = 5452/97 = 56.2062; \)
(b) \( \bar{\lambda} = \bar{x} = 394/7 = 56.2857; \)
(c) Yes;
(d) \( \bar{x} \) is better than \( s^2 \) because

\[ \text{Var}(\bar{X}) \approx \frac{56.2857}{98} = 0.5743 < 65.8956 = \frac{56.2857[2(56.2857 \cdot 98) + 97]}{98(97)} \approx \text{Var}(s^2). \]
\[ \hat{\theta}_1 = \hat{\mu} = 33.4267; \quad \hat{\theta}_2 = \hat{\sigma}^2 = 5.0980. \]

6.1–8 (a) 
\[
L(\theta) = \left( \frac{1}{\bar{x}} \right)^n \left( \prod_{i=1}^{n} x_i \right)^{1/\theta - 1}, \quad 0 < \theta < \infty
\]
\[
\ln L(\theta) = -n \ln \theta + \left( \frac{1}{\theta} - 1 \right) \ln \prod_{i=1}^{n} x_i
\]
\[
\frac{d \ln L(\theta)}{d\theta} = -\frac{n}{\theta} - \frac{1}{\theta^2} \ln \prod_{i=1}^{n} x_i = 0
\]
\[
\hat{\theta} = -\frac{1}{n} \ln \prod_{i=1}^{n} x_i
\]
\[
= -\frac{1}{n} \sum_{i=1}^{n} \ln x_i.
\]

(b) We first find \( E(\ln X) \):
\[
E(\ln X) = \int_{0}^{1} \ln x (1/\theta) x^{1/\theta - 1} dx.
\]
Using integration by parts, with \( u = \ln x \) and \( dv = (1/\theta) x^{1/\theta - 1} dx \),
\[
E(\ln X) = \lim_{a \to 0} \left[ x^{1/\theta} \ln x - \theta x^{1/\theta} \right]_{a}^{1} = -\theta.
\]
Thus
\[
E(\hat{\theta}) = -\frac{1}{n} \sum_{i=1}^{n} (-\theta) = \theta.
\]

6.1–10 (a) \( \bar{X} = 1/p \) so \( \bar{p} = 1/\bar{X} = n/\sum_{i=1}^{n} X_i \);
(b) \( \bar{p} \) equals the number of successes, \( n \), divided by the number of Bernoulli trials, \( \sum_{i=1}^{n} X_i \);
(c) \( 20/252 = 0.0794 \).

6.1–12 (a) \( E(\bar{X}) = E(Y)/n = np/n = p \);
(b) \( \text{Var}(\bar{X}) = \text{Var}(Y)/n^2 = np(1 - p)/n^2 = p(1 - p)/n \);
(c) \( E[\bar{X}(1 - \bar{X})/n] = [E(\bar{X}) - E(\bar{X}^2)]/n \)
\[
= \{p - [p^2 + p(1-p)/n]\}/n = \{p(1 - 1/n) - p^2(1 - 1/n)/n\}/n
\]
\[
= (1 - 1/n)p(1 - p)/n = (n - 1)p(1 - p)/n^2;
\]
(d) From part (c), the constant \( c = 1/(n - 1) \).

6.1–14 (a) \( E(cS) = E \left\{ \frac{c \sigma}{\sqrt{n - 1}} \left[ \frac{(n - 1)S^2}{\sigma^2} \right]^{1/2} \right\} \)
\[
= \frac{c \sigma}{\sqrt{n - 1}} \int_{0}^{\infty} v^{1/2} \nu^{(n-1)/2 - 1} e^{-v/2} \frac{dv}{\Gamma \left( \frac{n-1}{2} \right) \left( 2(n-1)/2 \right)}
\]
\[
= \frac{c \sigma}{\sqrt{n - 1}} \frac{\sqrt{2} \Gamma(n/2)}{\Gamma((n-1)/2)},
\]
so \( c = \frac{\sqrt{n - 1} \Gamma((n-1)/2)}{\sqrt{2} \Gamma(n/2)} \);
(b) When \( n = 5 \), \( c = 8/(3\sqrt{2\pi}) \) and when \( n = 6 \), \( c = 3\sqrt{5\pi}/(8\sqrt{2}) \).

(c) \[ c(n) = 0.96, 0.98, 1.00, 1.02, 1.04, 1.06, 1.08, 1.10, 1.12, 1.14, 1.16, 1.18 \]

We see that \[ \lim_{n \to \infty} c = 1. \]

6.1–16 \( \bar{x} = \alpha \theta, \; v = \alpha \theta^2 \) so that \( \tilde{\theta} = v/\bar{x}, \; \tilde{\alpha} = \bar{x}^2/s^2 \). For the given data, \( \tilde{\alpha} = 102.4990, \; \tilde{\theta} = 0.0658 \). Note that \( \bar{x} = 6.74, \; v = 0.4432, \; s^2 = 0.4617 \).

6.1–18 The experiment has a hypergeometric distribution with \( n = 8 \) and \( N = 64 \). From the sample, \( \bar{x} = 1.4667 \). Using this as an estimate for \( \mu \) we have

\[ 1.4667 = 8 \left( \frac{N_1}{64} \right) \quad \text{implies that} \quad \tilde{N_1} = 11.73. \]

A guess for the value of \( N_1 \) is therefore 12.

6.1–20 (a) \[ \theta = 1/2 \; \theta = 1 \; \theta = 2 \]

Figure 6.1–20: The p.d.f.s of \( X \) for three values of \( \theta \)

(b) \( E(X) = \theta/2 \). Thus the method of moments estimator of \( \theta \) is \( \tilde{\theta} = 2\bar{x} \).

(c) Since \( \bar{x} = 0.37323 \), a point estimate of \( \theta \) is \( 2(0.37323) = 0.74646 \).
6.2 Confidence Intervals for Means

6.2–2 (a) [77.272, 92.728]; (b) [79.12, 90.88]; (c) [80.065, 89.935]; (d) [81.154, 88.846].

6.2–4 (a) $\bar{x} = 56.8$;
(b) $[56.8 - 1.96(2/\sqrt{10}), \ 56.8 + 1.96(2/\sqrt{10})] = [55.56, 58.04]$;
(c) $P(X < 52) = P\left(Z < \frac{52 - 56.8}{2}\right) = P(Z < -2.4) = 0.0082$.

6.2–6
\[
\left[11.95 - 1.96\left(\frac{11.80}{\sqrt{37}}\right), \ 11.95 + 1.96\left(\frac{11.80}{\sqrt{37}}\right)\right] = [8.15, 15.75].
\]
If more extensive $t$-tables are available or if a computer program is used, we have
\[
\left[11.95 - 2.028\left(\frac{11.80}{\sqrt{37}}\right), \ 11.95 + 2.028\left(\frac{11.80}{\sqrt{37}}\right)\right] = [8.016, 15.884].
\]

6.2–8 (a) $\bar{x} = 46.42$;
(b) $46.72 \pm 2.132s/\sqrt{5}$ or $[40.26, 52.58]$.

6.2–10
\[
\left[21.45 - 1.314\left(\frac{0.31}{\sqrt{28}}\right), \ \infty\right) = [21.373, \infty).
\]

6.2–12 (a) $\bar{x} = 3.580$;
(b) $s = 0.512$;
(c) $[0, 3.580 + 1.833(0.512/\sqrt{10})] = [0, 3.877]$.

6.2–14 (a) $\bar{x} = 245.80$, $s = 23.64$, so a 95% confidence interval for $\mu$ is
\[
[245.80 - 2.145(23.64)/\sqrt{15}, \ 245.80 + 2.145(23.64)/\sqrt{15}] = [232.707, 258.893];
\]
(b) 

Figure 6.2–14: Box-and-whisker diagram of signals from detectors

(c) The standard deviation is quite large.

6.2–16 (a) $(\bar{x} + 1.96\sigma/\sqrt{5}) - (\bar{x} - 1.96\sigma/\sqrt{5}) = 3.92\sigma/\sqrt{5} = 1.753\sigma$;
(b) $(\bar{x} + 2.776s/\sqrt{5}) - (\bar{x} - 2.776s/\sqrt{5}) = 5.552s/\sqrt{5}$.

From Exercise 6.2–14 with $n = 5$, $E(S) = \frac{\sqrt{\Gamma(5/2)}\sigma}{\sqrt{\Gamma(4/2)}} = \frac{3\sqrt{\pi}\sigma}{2^{3/2}} = 0.94\sigma$, so that
$E[5.552S/\sqrt{5}] = 2.334\sigma$. 

6.2–18  \( 6.05 \pm 2.576(0.02)/\sqrt{1219} \) or \([6.049, 6.051]\).

6.2–20 (a) \( \bar{x} = 4.483, \ s^2 = 0.1719, \ s = 0.4146; \)

(b) \([4.483 - 1.714(0.4146)/\sqrt{24}], \ \infty) = [4.338, \ \infty); \)

(c) yes; construct a \(q-q\) plot or compare empirical and theoretical distribution functions.

\[ N(4.48, 0.1719) \] quantiles

Figure 6.2–20: \(q-q\) plot and a comparison of empirical and theoretical distribution functions

6.2–22 (a) \( \bar{x} = 5.833, \ s = 1.661; \)

(b) Using a normal approximation, the 95% confidence interval is

\([5.833 - 1.96(1.661/10), 5.833 + 1.96(1.661/10)] = [5.507, 6.159]. \)

Using \( t_{0.025}(99) = 1.98422, \) the confidence interval is

\([5.833 - 1.98422(1.661/10), 5.833 + 1.98422(1.661/10)] = [5.503, 6.163]. \)

6.3 Confidence Intervals For Difference of Two Means

6.3–2 \( \bar{x} = 539.2, \ s^2_x = 4,948.7, \ \bar{y} = 544.625, \ s^2_y = 4,327.982, \ s_p = 67.481, \ t_{0.05}(11) = 1.796, \)

so the confidence interval is \([-74.517, 63.667]. \)

6.3–4 (a) \( \bar{x} - \bar{y} = 1511.714 - 1118.400 = 393.314; \)

(b) \( s^2_x = 49,669.905, \ s^2_y = 15,297.600, \ r = [8.599] = 8, \ t_{0.025}(8) = 2.306, \) so the confidence interval is \([179.148, 607.480]. \)
6.3–6 (a) $\bar{x} = 712.25$, $\bar{y} = 705.4375$, $s_x^2 = 29,957.8409$, $s_y^2 = 20,082.1292$, $s_p = 155.7572$, $t_{0.025}(20) = 2.056$. Thus a 95% confidence interval for $\mu_x - \mu_y$ is $[-115.480, 129.105]$.

(b) 

![Box-and-whisker diagram for $x$](image1)

![Box-and-whisker diagram for $y$](image2)

Figure 6.3–6: Box-and-whisker diagrams for butterfat production

(c) No.

6.3–8 (a) $\bar{x} = 2.584$, $\bar{y} = 1.564$, $s_x^2 = 0.1042$, $s_y^2 = 0.0428$, $s_p = 0.2711$, $t_{0.025}(18) = 2.101$. Thus a 95% confidence interval for $\mu_x - \mu_y$ is $[0.7653, 1.2747]$.

(b) 

![Box-and-whisker diagram for $x$](image3)

![Box-and-whisker diagram for $y$](image4)

Figure 6.3–8: Box-and-whisker diagrams, wedge on $(X)$ and wedge off $(Y)$

(c) Yes.

6.3–10 From (a), (b), and (c), we know

(d) 

$$
\frac{\bar{x} - \bar{y} - (\mu_x - \mu_y)}{\sqrt{\frac{d\sigma_x^2}{n} + \frac{\sigma_y^2}{m}}} \approx \sqrt{\frac{(n-1)S_x^2}{d\sigma_x^2} + \frac{(m-1)S_y^2}{\sigma_y^2}}/(n + m - 2)
$$

has a $t(n+m-2)$ distribution. Clearly, this ratio does not depend upon $\sigma_2^2$; so

$$
\bar{x} - \bar{y} \pm t_{\alpha/2}(n+m-2) \sqrt{\frac{(n-1)s_x^2}{n} + \frac{(m-1)s_y^2}{m}} \left(\frac{d}{n} + \frac{1}{m}\right)
$$

provides a $100(1 - \alpha)$% confidence interval for $\mu_x - \mu_y$. 

6.3–12 (a) $\bar{d} = 0.07875$;
(b) $[\bar{d} - 1.7140.25492/\sqrt{24}, \infty) = [-0.0104, \infty)$;
(c) not necessarily.

6.3–14 (a) $\bar{x} = 136.61, \bar{y} = 134.87, s_x^2 = 3.2972, s_y^2 = 1.0957$;
(b) Using Welch with $r = 18$ degrees of freedom, the 95% confidence interval is $[0.436, 3.041]$.
Assuming equal variances with $r = 20$ degrees of freedom, the 95% confidence interval is $[0.382, 3.095]$.
(c) The five-number summary for the $X$ observations is 133.30, 135.625, 136.95, 137.80, 139.40. The five-number summary for the $Y$ observations is 132.70, 134.15, 134.95, 135.825, 136.00.

(d) The mean for hot seems to be larger than the mean for cold.

6.3–16 $\bar{x} = 31.14, \bar{y} = 33.43, s_a = 6.12, s_b = 7.52$. Assuming normally distributed distributions and equal variances, a 90% confidence interval for the difference of the means is $[-8.82, 4.25]$.

6.4 Confidence Intervals For Variances

6.4–2 For these 9 weights, $\bar{x} = 20.90, s = 1.858$.
(a) A point estimate for $\sigma$ is $s = 1.858$.
(b) $\left[\frac{1.858\sqrt{8}}{\sqrt{17.54}}, \frac{1.858\sqrt{8}}{\sqrt{2.180}}\right] = [1.255, 3.599]$ or $\left[\frac{1.858\sqrt{8}}{\sqrt{21.595}}, \frac{1.858\sqrt{8}}{\sqrt{2.623}}\right] = [1.131, 3.245]$;
(c) $\left[\frac{1.858\sqrt{8}}{\sqrt{15.51}}, \frac{1.858\sqrt{8}}{\sqrt{2.733}}\right] = [1.334, 3.179]$ or $\left[\frac{1.858\sqrt{8}}{\sqrt{19.110}}, \frac{1.858\sqrt{8}}{\sqrt{3.298}}\right] = [1.202, 2.894]$. 

---

Figure 6.3–14: Hardness of hot ($X$) and cold ($Y$) water

6.4–4 (a) A point estimate for $\sigma$ is $s = 0.512$. Note that $s^2 = 0.2618$.
(b) $\left[\frac{9(0.2618)}{19.02}, \frac{9(0.2618)}{2.700}\right] = [0.124, 0.873]$;
(c) $\left[\frac{3\sqrt{0.2618}}{\sqrt{19.02}}, \frac{3\sqrt{0.2618}}{\sqrt{2.700}}\right] = [0.352, 0.934]$;
(d) $\left[\frac{3\sqrt{0.2618}}{\sqrt{22.912}}, \frac{3\sqrt{0.2618}}{\sqrt{3.187}}\right] = [0.321, 0.860]$.

6.4–6 (a) Since
\[ E(e^{tX}) = (1 - \theta t)^{-1}, \]
\[ E[e^{t(2X/\theta)}] = [1 - \theta (2t/\theta)]^{-1} = (1 - 2t)^{-2/2}, \]
the moment generating function for $\chi^2(2)$. Thus $W$ is the sum of $n$ independent $\chi^2(2)$ variables and so $W$ is $\chi^2(2n)$.

(b) $P(\chi^2_{1-\alpha/2}(2n) \leq \frac{2 \sum_{i=1}^{n} X_i}{\theta} \leq \chi^2_{\alpha/2}(2n)) = P\left(\frac{2 \sum_{i=1}^{n} X_i}{\chi^2_{\alpha/2}(2n)} \leq \theta \leq \frac{2 \sum_{i=1}^{n} X_i}{\chi^2_{1-\alpha/2}(2n)}\right)$.
Thus, a $100(1 - \alpha)\%$ confidence interval for $\theta$ is
\[ \left[\frac{2 \sum_{i=1}^{n} X_i}{\chi^2_{\alpha/2}(2n)}, \frac{2 \sum_{i=1}^{n} X_i}{\chi^2_{1-\alpha/2}(2n)}\right]. \]
(c) $\left[\frac{2(7)(93.6)}{23.68}, \frac{2(7)(93.6)}{6.571}\right] = [55.34, 199.42]$.

6.4–8 (a) $\bar{x} = 84.7436;
\left[\frac{2 \cdot 39 \cdot 84.7436}{104.316}, \frac{2 \cdot 39 \cdot 84.7436}{55.4656}\right] = [63.365, 119.173]$;
(b) $\bar{y} = 113.1613;
\left[\frac{2 \cdot 31 \cdot 113.1613}{85.6537}, \frac{2 \cdot 31 \cdot 113.1613}{42.1260}\right] = [81.9112, 166.5480]$.

6.4–10 A 90% confidence interval for $\sigma_X^2 / \sigma_Y^2$ is
\[ \left[\frac{1}{F_{0.05}(15, 12)} \left(\frac{s_x}{s_y}\right)^2, \frac{1}{F_{0.05}(12, 15)} \left(\frac{s_x}{s_y}\right)^2\right] = \left[\frac{1}{2.62} \left(\frac{0.197}{0.318}\right)^2, \frac{2.48}{0.197}\right]^2. \]
So a 90% confidence interval for $\sigma_X / \sigma_Y$ is given by the square roots of these values, namely [0.383, 0.976].

6.4–12 (a) $\left[\frac{1}{3.115} \left(\frac{604.489}{329.258}\right), 3.115 \left(\frac{604.489}{329.258}\right)\right] = [0.589, 5.719]$;
(b) $[0.77, 2.39]$.

6.4–14 From the restriction, treating $b$ as a function of $a$, we have
\[ g(b) \frac{db}{da} - g(a) = 0, \]
or, equivalently,
\[ \frac{db}{da} = \frac{g(a)}{g(b)}. \]
Thus
\[
\frac{dk}{da} = s\sqrt{n-1} \left( \frac{-1/2}{a^{3/2}} - \frac{-1/2}{b^{3/2}} \frac{g(a)}{g(b)} \right) = 0
\]
requires that
\[
a^{3/2} g(a) = b^{3/2} g(b),
\]
or, equivalently,
\[
a^{n/2} e^{-a^2} = b^{n/2} e^{-b^2}.
\]

6.4–16 (a) \[
\left[ \frac{1}{3.01} \left( \frac{29,957.841}{20,082.129} \right) , \frac{3.35}{20,082.129} \left( \frac{29,957.841}{20,082.129} \right) \right] = [0.496, 4.997];
\]
The \( F \) values were found using Table VII and linear interpolation. The right endpoint is 4.968 if \( F_{0.025}(15, 11) = 3.33 \) is used (found using Minitab).
\( b \)
\[
\left[ \frac{1}{2.52} \left( \frac{6.2178}{2.7585} \right) , \frac{2.52}{2.7585} \left( \frac{6.2178}{2.7585} \right) \right] = [0.894, 5.680];
\]
Using linear interpolation: \( F_{0.025}(19, 19) \approx \frac{4(2.46) + 2.76}{5} = 2.52; \) using Minitab:
\( F_{0.025}(19, 19) = 2.5265. \)
\( c \)
\[
\left[ \frac{1}{4.03} \left( \frac{0.10416}{0.04283} \right) , \frac{4.03}{0.04283} \left( \frac{0.10416}{0.04283} \right) \right] = [0.603, 9.801].
\]

6.5 Confidence Intervals For Proportions

6.5–2 (a) \( \hat{p} = \frac{142}{200} = 0.71; \)
\( b \)
\[
\left[ \frac{0.71 - 1.645 \sqrt{\left( \frac{0.71)(0.29)}{200} \right) } , \frac{0.71 + 1.645 \sqrt{\left( \frac{0.71)(0.29)}{200} \right) } } \right] = [0.657, 0.763];
\]
\( c \)
\[
\frac{0.71 + 1.645^2/400 \pm 1.645 \sqrt{\left( \frac{0.71)(0.29)}{200} \right) + 1.645^2/4\cdot 200^2} }{1 + 1.645^2/200} = [0.655, 0.760];
\]
\( d \)
\[
\hat{p} = \frac{142 + 2}{200 + 4} = \frac{12}{17} = 0.7059; \)
\[
\left[ \frac{12}{17} - 1.645 \sqrt{\left( \frac{12/17)(5/17)}{200} \right) , \frac{12}{17} + 1.645 \sqrt{\left( \frac{12/17)(5/17)}{200} \right) } \right] = [0.653, 0.759];
\]
\( e \)
\[
\left[ \frac{0.71 - 1.282 \sqrt{\left( \frac{0.71)(0.29)}{200} \right) } , 0 \right] = [0.669, 0].
\]

6.5–4 \[
\left[ \frac{0.70 - 1.96 \sqrt{\left( \frac{0.70)(0.30)}{1234} \right) } , 0.70 + 1.96 \sqrt{\left( \frac{0.70)(0.30)}{1234} \right) } \right] = [0.674, 0.726].
\]

6.5–6 \[
\left[ \frac{0.26 - 2.326 \sqrt{\left( \frac{0.26)(0.74)}{5757} \right) } , 0.26 + 2.326 \sqrt{\left( \frac{0.26)(0.74)}{5757} \right) } \right] = [0.247, 0.273].
\]

6.5–8 (a) \( \hat{p} = \frac{388}{1022} = 0.3796; \)
\( b \)
\[
0.3796 \pm 1.645 \sqrt{\left( \frac{(0.3796)(0.6204)}{1022} \right) } \) or \([0.3546, 0.4046].
\]
6.5–10 (a) \[ 0.58 \pm 1.645 \sqrt{\frac{(0.58)(0.42)}{500}} \] or 
\[ [0.544, 0.616] \];
(b) \[ \frac{0.045}{\sqrt{(0.58)(0.42)}} = 2.04 \] corresponds to an approximate 96% confidence level.

6.5–12 (a) \[ \hat{p}_1 = \frac{206}{374} = 0.551, \quad \hat{p}_2 = \frac{338}{426} = 0.793; \]
(b) \[ 0.551 - 0.793 \pm 1.96 \sqrt{\frac{(0.551)(0.449)}{374} + \frac{(0.793)(0.207)}{426}} \]
\[ -0.242 \pm 0.063 \] or 
\[ [-0.305, -0.179] \].

6.5–14 (a) \[ \hat{p}_1 = 28/194 = 0.144; \]
(b) \[ 0.144 \pm 1.96 \sqrt{\frac{(0.144)(0.856)}{194}} \] or 
\[ [0.095, 0.193] \];
(c) \[ \hat{p}_1 - \hat{p}_2 = 28/194 - 11/162 = 0.076; \]
(d) \[ 0.076 - 1.645 \sqrt{\frac{(0.144)(0.856)}{194} + \frac{(0.068)(0.932)}{162}}, 1 \] or 
\[ [0.044, 1] \].

6.5–16 \[ \hat{p}_1 = 520/1300 = 0.40, \quad \hat{p}_2 = 385/1100 = 0.35, \]
\[ 0.40 - 0.35 \pm 1.96 \sqrt{\frac{(0.40)(0.60)}{1300} + \frac{(0.35)(0.65)}{1100}} \] or 
\[ [0.011, 0.089] \].

6.5–18 (a) \[ \hat{p}_A = 170/460 = 0.37, \quad \hat{p}_B = 141/440 = 0.32, \]
\[ 0.37 - 0.32 \pm 1.96 \sqrt{\frac{(0.37)(0.63)}{460} + \frac{(0.32)(0.68)}{440}} \] or 
\[ [-0.012, 0.112] \];
(b) yes, the interval includes zero.

6.6 Sample Size

6.6–2 \[ n = \frac{(1.96)^2(169)}{(1.5)^2} = 288.5 \] so the sample size needed is 289.

6.6–4 \[ n = \frac{(1.96)^2(34.9)}{(0.5)^2} = 537, \] rounded up to the nearest integer.

6.6–6 \[ n = \frac{(1.96)^2(33.7)^2}{5^2} = 175, \] rounded up to the nearest integer.

6.6–8 If we let \[ p^* = \frac{30}{375} = 0.08, \] then \[ n = \frac{1.96^2(0.08)(0.92)}{0.025^2} = 453, \] rounded up.

6.6–10 \[ n = \frac{(1.645)^2(0.394)(0.606)}{(0.04)^2} = 404, \] rounded up to the nearest integer.

6.6–12 \[ n = \frac{(1.645)^2(0.80)(0.20)}{(0.03)^2} = 482, \] rounded up to the nearest integer.
6.6–14 If we let \( p^* = \frac{686}{1009} = 0.6799 \), then \( n = \frac{2.326^2(0.6799)(0.3201)}{0.025^2} = 1884 \), rounded up.

6.6–16 \( m = \frac{(1.96)^2(0.5)(0.5)}{(0.04)^2} = 601 \), rounded up to the nearest integer.

(a) \( n = \frac{601}{1 + 600/1500} = 430 \);

(b) \( n = \frac{601}{1 + 600/15,000} = 578 \);

(c) \( n = \frac{601}{1 + 600/25,000} = 587 \).

6.6–18 For the difference of two proportions with equal sample sizes

\[ \delta = z_{\alpha/2} \sqrt{\frac{p_1^*(1 - p_1^*)}{n} + \frac{p_2^*(1 - p_2^*)}{n}} \]

or

\[ n = \frac{z_{\alpha/2}^2 [p_1^*(1 - p_1^*) + p_2^*(1 - p_2^*)]}{\delta^2} \]

For unknown \( p^* \),

\[ n = \frac{z_{\alpha/2}^2 [0.25 + 0.25]}{\delta^2} = \frac{z_{\alpha/2}^2}{2\delta^2} \]

So \( n = \frac{1.282^2}{2(0.05)^2} = 329 \), rounded up.

6.7 A Simple Regression Problem

6.7–2 (a) \[
\begin{array}{cccccc}
 x & y & x^2 & xy & y^2 & (y - \bar{y})^2 \\
 2.0 & 1.3 & 4.00 & 2.60 & 1.69 & 0.361716 \\
 3.3 & 3.3 & 10.89 & 10.89 & 10.89 & 0.040701 \\
 3.7 & 3.3 & 13.69 & 12.21 & 10.89 & 0.277225 \\
 2.0 & 2.0 & 4.00 & 4.00 & 4.00 & 0.009716 \\
 2.3 & 1.7 & 5.29 & 3.91 & 2.89 & 0.228120 \\
 2.7 & 3.0 & 7.29 & 8.10 & 9.00 & 0.206231 \\
 4.0 & 4.0 & 16.00 & 16.00 & 16.00 & 0.006204 \\
 3.7 & 3.0 & 13.69 & 11.10 & 9.00 & 0.217630 \\
 3.0 & 2.7 & 9.00 & 8.10 & 7.29 & 0.014900 \\
 2.3 & 3.0 & 5.29 & 6.90 & 9.00 & 0.676310 \\
 29.0 & 27.3 & 89.14 & 83.81 & 80.65 & 1.849254 \\
\end{array}
\]

\[ \hat{\alpha} = \bar{y} = 27.3/10 = 2.73; \]

\[ \hat{\beta} = \frac{83.81 - (29.0)(27.3)/10}{89.14 - (29.0)(29.0)/10} = \frac{4.64}{5.04} = 0.9206; \]

\[ \hat{y} = 2.73 + (0.9206/5.04)(x - 2.90) \]
Figure 6.7–2: Earned grade \( y \) versus predicted grade \( x \)

\( \sigma^2 = 1.849254 \frac{1}{10} = 0.184925 \).

6.7–4  (a) \( \hat{y} = 0.9810 + 0.0249x \);

(b) Figure 6.7–4: (b) Millivolts \( y \) versus known concentrations in ppm \( x \)
The equation of the quadratic regression line is
\[
\hat{y} = 1.73504 - 0.000377x + 0.000124x^2.
\]

The +0 in the above expression is for the three cross product terms and we must still argue that each of these is indeed 0. We have

\[
2(\hat{\alpha} - \alpha)(\hat{\beta} - \beta) \sum_{i=1}^{n} (x_i - \bar{x}) = 0,
\]

\[
2(\hat{\alpha} - \alpha) \sum_{i=1}^{n} [Y_i - \hat{\alpha} - \hat{\beta}(x_i - \bar{x})] = 2(\hat{\alpha} - \alpha) \left[ \sum_{i=1}^{n} (Y_i - \bar{Y}) - \hat{\beta} \sum_{i=1}^{n} (x_i - \bar{x}) \right] = 0,
\]

\[
2(\hat{\beta} - \beta) \left[ \sum_{i=1}^{n} (x_i - \bar{x})(Y_i - \bar{Y}) - \hat{\beta} \sum_{i=1}^{n} (x_i - \bar{x})^2 \right] = 
\]

\[
2(\hat{\beta} - \beta) \left[ \sum_{i=1}^{n} (x_i - \bar{x})(Y_i - \bar{Y}) - \sum_{i=1}^{n} (x_i - \bar{x})(Y_i - \bar{Y}) \right] = 0
\]

since

\[
\hat{\beta} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(Y_i - \bar{Y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}.
\]
6.7–8  \[ P \left[ \frac{\chi_{1-\alpha/2}^2(n-2)}{\hat{\sigma}^2} \leq \frac{n\hat{\sigma}^2}{\sigma^2} \leq \chi_{\alpha/2}^2(n-2) \right] = 1 - \alpha \]

\[ P \left[ \frac{n\hat{\sigma}^2}{\chi_{\alpha/2}^2(n-2)} \leq \sigma^2 \leq \frac{n\hat{\sigma}^2}{\chi_{1-\alpha/2}^2(n-2)} \right] = 1 - \alpha. \]

6.7–10 Recall that \( \hat{\alpha} = 2.73, \hat{\beta} = 4.64 \), \( \sigma^2 = 0.184925, \ n = 10 \). The endpoints for the 95% confidence interval are

\[ 2.73 \pm 2.306 \sqrt{\frac{0.184925}{8}} \quad \text{or} \quad [2.379, 3.081] \quad \text{for} \ \alpha; \]

\[ 4.64/5.04 \pm 2.306 \sqrt{\frac{1.84925}{8(5.04)}} \quad \text{or} \quad [0.4268, 1.4145] \quad \text{for} \ \beta; \]

\[ \left[ \frac{1.84925}{17.54}, \frac{1.84925}{2.180} \right] = [0.105, 0.848] \quad \text{for} \ \sigma^2. \]

6.7–12 (a) \( \hat{\beta} = \frac{(1294) - (110)(121)/12}{(1234) - (110)^2/12} = \frac{184.833}{225.667} = 0.819; \)

\( \hat{\alpha} = \frac{121}{12} = 10.083; \)

\( \hat{y} = 10.083 + \frac{184.833}{225.667} \left( \frac{x - 110}{12} \right) \)

\( = 0.819x + 2.575; \)

(b)

Figure 6.7–12: CO (\( y \)) versus tar (\( x \)) for 12 brands of cigarettes

(c) \( \hat{\alpha} = 10.083, \hat{\beta} = 0.819, \)

\[ n\hat{\sigma}^2 = \frac{1411 - 121^2}{12} - 0.81905(1294) + 0.81905(110)(121)/12 = 39.5289; \]

\[ \hat{\sigma}^2 = \frac{39.5289}{12} = 3.294. \]
The endpoints for 95% confidence intervals are

\[
10.083 \pm 2.228 \sqrt{\frac{3.294}{10}} \quad \text{or} \quad [8.804, 11.362] \quad \text{for } \alpha;
\]

\[
0.819 \pm 2.228 \sqrt{\frac{39.5289}{10(225.667)}} \quad \text{or} \quad [0.524, 1.114] \quad \text{for } \beta;
\]

\[
\left[ \frac{39.5289}{20.48}, \frac{39.5289}{3.247} \right] = [1.930, 12.174] \quad \text{for } \sigma^2.
\]

6.7–14 (a) \( \hat{\alpha} = \frac{395}{15} = 26.333, \)

\[
\hat{\beta} = \frac{9292 - (346)(395)/15}{8338 - (346)^2/15} = \frac{180.667}{356.933} = 0.506,
\]

\[
\hat{y} = 26.333 + \frac{180.667}{356.933} \left( x - \frac{346}{15} \right)
\]

\[
= 0.506x + 14.657;
\]

(b) Figure 6.7–14: ACT natural science \((y)\) versus ACT social science \((x)\) scores

(c) \( \hat{\alpha} = 26.33, \hat{\beta} = 0.506, \)

\[
n\hat{\sigma}^2 = 10,705 - \frac{395^2}{15} - 0.5061636(9292) + 0.5061636(346)(395)/15
\]

\[
= 211.8861,
\]

\[
\hat{\sigma}^2 = \frac{211.8861}{15} = 14.126.
\]

(d) The endpoints for 95% confidence intervals are

\[
26.333 \pm 2.160 \sqrt{\frac{14.126}{13}} \quad \text{or} \quad [24.081, 28.585] \quad \text{for } \alpha;
\]

\[
0.506 \pm 2.160 \sqrt{\frac{211.8861}{13(356.933)}} \quad \text{or} \quad [0.044, 0.968] \quad \text{for } \beta;
\]
\[
\begin{bmatrix}
\frac{211.8861}{24.74}, & \frac{211.8861}{5.009}
\end{bmatrix} = [8.566, 42.301] \text{ for } \sigma^2.
\]

**6.7–16 (a)** \(\tilde{y} = 6.919 + 0.8222x\), female front legs versus body lengths on left;

**6.7–16 (b)** \(\tilde{y} = -0.253 + 1.273x\), female back lengths versus front legs on right.

Figure 6.7–16: Female: (a): lengths of front legs versus body lengths; (b): back versus front legs

**6.7–16 (c)** \(\tilde{y} = 3.996 + 1.703x\), male back legs versus body lengths on left;

**6.7–16 (d)** \(\tilde{y} = 0.682 + 1.253x\), male back lengths versus front legs on right.

Figure 6.7–16: Male: (c): lengths of back legs versus body lengths; (d): back versus front legs
6.7–18 (b) The least squares regression line for \( y = a + b \) versus \( b \) is \( \hat{y} = 1.360 + 1.626b \);
(c) \( y = \phi x = 1.618x \) is added on the right figure below.

![Figure 6.7–18: Scatter plot of \( a + b \) versus \( b \) with least squares regression line and with \( y = \phi x \)]

(d) The sample mean of the points \( (a+b)/b \) is 1.647 which is close to the value of \( \phi = 1.618 \).

6.8 More Regression

6.8–2 (a) In Exercise 6.7–2 we found that

\[
\hat{\beta} = \frac{4.64}{5.04}, \quad n\sigma^2 = 1.84924, \quad \sum_{i=1}^{10} (x_i - \bar{x})^2 = 5.04.
\]

So the endpoints for the confidence interval are given by

\[
2.73 + \frac{4.64}{5.04} (x - 2.90) \pm 2.306 \sqrt{\frac{1.8493}{8} \left( \frac{1}{10} + \frac{(x - 2.90)^2}{5.04} \right)}.
\]

- \( x = 2 \): [1.335, 2.468],
- \( x = 3 \): [2.468, 3.176],
- \( x = 4 \): [3.096, 4.389].

(b) The endpoints for the prediction interval are given by

\[
2.73 + \frac{4.64}{5.04} (x - 2.90) \pm 2.306 \sqrt{\frac{1.8493}{8} \left( 1 + \frac{1}{10} + \frac{(x - 2.90)^2}{5.04} \right)}.
\]

- \( x = 2 \): [0.657, 3.146],
- \( x = 3 \): [1.658, 3.986],
- \( x = 4 \): [2.459, 5.026].
6.8–4 (a) In Exercise 6.7–11, we found that

$$\hat{\beta} = \frac{24.8}{40}, \quad n\sigma^2 = 5.1895, \quad \sum_{i=1}^{10} (x_i - \bar{x})^2 = 40,$$

So the endpoints for the confidence interval are given by

$$50.415 + 0.62(x - 56) \pm 1.734 \sqrt{\frac{5.1895}{18} \left( \frac{1}{20} + \frac{(x - 56)^2}{40} \right)}.$$  

- $x = 54: \ [48.814, 49.536]$,  
- $x = 56: \ [50.207, 50.623]$,  
- $x = 58: \ [51.294, 52.016]$.

(b) The endpoints for the prediction interval are given by

$$50.415 + 0.62(x - 56) \pm 1.734 \sqrt{\frac{5.1895}{18} \left( \frac{1}{20} + \frac{(x - 56)^2}{40} \right)},$$  

- $x = 54: \ [48.177, 50.173]$,  
- $x = 56: \ [49.461, 51.369]$,  
- $x = 58: \ [50.657, 52.653]$. 

Figure 6.8–2: A 95% confidence interval for $\mu(x)$ and a 95% prediction band for $Y$. 

6.8–6 (a) For these data,
\[
\sum_{i=1}^{10} x_i = 55, \quad \sum_{i=1}^{10} y_i = 9811, \quad \sum_{i=1}^{10} x_i^2 = 385,
\]
\[
\sum_{i=1}^{10} x_i y_i = 65,550, \quad \sum_{i=1}^{10} y_i^2 = 11,280,031.
\]

Thus \( \hat{\alpha} = 9811/10 = 981.1 \) and
\[
\hat{\beta} = \frac{65,550 - (55)(9811)/10}{385 - (55)^2/10} = \frac{11589.5}{82.5} = 140.4788.
\]

The least squares regression line is
\[
\hat{y} = 981.1 + 140.4788(x - 5.5) = 208.467 + 140.479x.
\]

(b) 

Figure 6.8–6: Number of programs \( y \) vs. year \( x \)

(c) 1753.733 \( \pm \) 160.368 or \([1593.365, 1914.101]\).
6.8-8 Let \( K(\beta_1, \beta_2, \beta_3) = \sum_{i=1}^{n} (y_i - \beta_1 - \beta_2 x_{1i} - \beta_3 x_{2i})^2 \). Then

\[
\frac{\partial K}{\partial \beta_1} = \sum_{i=1}^{n} 2(y_i - \beta_1 - \beta_2 x_{1i} - \beta_3 x_{2i})(-1) = 0;
\]

\[
\frac{\partial K}{\partial \beta_2} = \sum_{i=1}^{n} 2(y_i - \beta_1 - \beta_2 x_{1i} - \beta_3 x_{2i})(-x_{1i}) = 0;
\]

\[
\frac{\partial K}{\partial \beta_3} = \sum_{i=1}^{n} 2(y_i - \beta_1 - \beta_2 x_{1i} - \beta_3 x_{2i})(-x_{2i}) = 0.
\]

Thus, we must solve simultaneously the three equations

\[
n\beta_1 + \left( \sum_{i=1}^{n} x_{1i} \right) \beta_2 + \left( \sum_{i=1}^{n} x_{2i} \right) \beta_3 = \sum_{i=1}^{n} y_i
\]

\[
\left( \sum_{i=1}^{n} x_{1i} \right) \beta_1 + \left( \sum_{i=1}^{n} x_{1i}^2 \right) \beta_2 + \left( \sum_{i=1}^{n} x_{1i} x_{2i} \right) \beta_3 = \sum_{i=1}^{n} x_{1i} y_i
\]

\[
\left( \sum_{i=1}^{n} x_{2i} \right) \beta_1 + \left( \sum_{i=1}^{n} x_{1i} x_{2i} \right) \beta_2 + \left( \sum_{i=1}^{n} x_{2i}^2 \right) \beta_3 = \sum_{i=1}^{n} x_{2i} y_i.
\]

We have

\[
12\beta_1 + 4\beta_2 + 4\beta_3 = 23
\]

\[
4\beta_1 + 26\beta_2 + 5\beta_3 = 75
\]

\[
4\beta_1 + 5\beta_2 + 22\beta_3 = 37
\]

so that

\[
\hat{\beta}_1 = \frac{4373}{5956} = 0.734, \quad \hat{\beta}_2 = \frac{3852}{1489} = 2.587, \quad \hat{\beta}_3 = \frac{1430}{1489} = 0.960.
\]

Figure 6.8-8: Two views of the points and the regression plane
6.8–10 (a) and (b)

Figure 6.8–10: Swimmer’s meet time ($y$) versus best year time ($x$) and residual plot

(c) and d)

Figure 6.8–10: A 90% confidence interval for $\mu(x)$ and a 90% prediction band for $Y$

(e)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Point Estimates</th>
<th>Confidence Level</th>
<th>Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha$</td>
<td>22.5291</td>
<td>0.95</td>
<td>[22.3217, 22.7365]</td>
</tr>
<tr>
<td>$\beta$</td>
<td>0.6705</td>
<td>0.95</td>
<td>[0.4577, 0.8833]</td>
</tr>
<tr>
<td>$\sigma^2$</td>
<td>0.1976</td>
<td>0.95</td>
<td>[0.1272, 0.4534]</td>
</tr>
</tbody>
</table>
6.8–12 (c) and (d)

Figure 6.8–12: \((y)\) versus \((x)\) with linear regression line and residual plot

(e) Linear regression is not appropriate. Finding the least-squares quadratic regression line using the raw data yields \(\hat{y} = -1.895 + 9.867x - 0.996x^2\).

(f) and (g)

Figure 6.8–12: \((y)\) versus \((x)\) with quadratic regression curve and residual plot
Figure 6.8–14: Number of procedures \((y)\) versus year \((x)\), linear regression and residual plot

(b) Without plotting the data and the residual plot, linear regression seems to be appropriate. However, it is clear that some other polynomial should be used.

(c) and (d)

The least squares cubic regression curve is

\[
\hat{y} = 209.8168 - 21.3099x + 16.2631x^2 - 0.8323x^3.
\]

Note that the years are 0, 1, 2, \ldots, 11 rather than 1980, 1981, \ldots, 1991.

Chapter 7

Tests of Statistical Hypotheses

7.1 Tests about Proportions

7.1–2 (a)  \( C = \{x : x = 0, 1, 2\} \);
(b)  \( \alpha = P(X = 0, 1, 2; p = 0.6) = (0.4)^4 + 4(0.6)(0.4)^3 + 6(0.6)^2(0.4)^2 = 0.5248; \)
\( \beta = P(X = 3, 4; p = 0.4) = 4(0.4)^4 + (0.4)^4 = 0.1792. \)

OR

(a')  \( C = \{x : x = 0, 1\} \);
(b')  \( \alpha = P(X = 0, 1; p = 0.6) = (0.4)^4 + 4(0.6)(0.4)^3 = 0.1792; \)
\( \beta = P(X = 2, 3, 4; p = 0.4) = 6(0.4)^2(0.6)^2 + 4(0.4)^3(0.6) + (0.4)^4 = 0.5248. \)

7.1–4 Using Table II in the Appendix,

(a)  \( \alpha = P(Y \geq 13; p = 0.40) = 1 - 0.8462 = 0.1538; \)
(b)  \( \beta = P(Y \leq 12; p = 0.60) = P(25 - Y \geq 25 - 12) \) where \( 25 - Y \) is \( b(25, 0.40) \)
\( = 1 - 0.8462 = 0.1538. \)

7.1–6 (a)  \( z = \frac{y/n - 1/6}{\sqrt{(1/6)(5/6)/n}} \leq -1.645; \)
(b)  \( z = \frac{1265/8000 - 1/6}{\sqrt{(1/6)(5/6)/8000}} = -2.05 < -1.645, \) reject \( H_0. \)
(c)  \( [0, \hat{p} + 1.645\sqrt{\hat{p}(1 - \hat{p})/8000}] = [0, 0.1648], 1/6 = 0.1667 \) is not in this interval. This is consistent with the conclusion to reject \( H_0. \)

7.1–8 The value of the test statistic is

\( z = \frac{0.70 - 0.75}{\sqrt{(0.75)(0.25)/390}} = -2.280. \)

(a) Since \( z = -2.280 < -1.645, \) reject \( H_0. \)
(b) Since \( z = -2.280 > -2.326, \) do not reject \( H_0. \)
(c) \( p\)-value \( \approx P(Z \leq -2.280) = 0.0113. \) Note that \( 0.01 < p\)-value \( < 0.05. \)
7.1–10  (a) \( H_0: p = 0.14; H_1: p > 0.14; \)

(b)  \( C = \{ z : z \geq 2.326 \} \) where  
\[
z = \frac{y/n - 0.14}{\sqrt{(0.14)(0.86)/n}}; \]

(c)  
\[
z = \frac{104/590 - 0.14}{\sqrt{(0.14)(0.86)/590}} = 2.539 > 2.326 \]
so \( H_0 \) is rejected and conclude that the campaign was successful.

7.1–12  (a) \( z = \frac{y/n - 0.65}{\sqrt{(0.65)(0.35)/n}} \geq 1.96; \)

(b) \( z = \frac{414/600 - 0.65}{\sqrt{(0.65)(0.35)/600}} = 2.054 > 1.96, \) reject \( H_0 \) at \( \alpha = 0.025. \)

(c) Since the \( p \)-value \( \approx P(Z \geq 2.054) = 0.0200 < 0.0250, \) reject \( H_0 \) at an \( \alpha = 0.025 \) significance level;

(d) A 95\% one-sided confidence interval for \( p \) is \( [0.69 - 1.645\sqrt{(0.69)(0.31)/600}, 1] = [0.659, 1]. \)

7.1–14 We shall test \( H_0: p = 0.20 \) against \( H_1: p < 0.20. \) With a sample size of 15, if the critical region is \( C = \{ x : x \leq 1 \}, \) the significance level is \( \alpha = 0.1671. \) Because \( x = 2, \) Dr. X has not demonstrated significant improvement with these few data.

7.1–16  (a) \( |z| = \frac{|\hat{p} - 0.20|}{\sqrt{(0.20)(0.80)/n}} \geq 1.96; \)

(b) Only 5/54 for which \( z = -1.973 \) leads to rejection of \( H_0, \) so 5\% reject \( H_0. \)

(c) 5\%.

(d) 95\%.

(e) \( z = \frac{219/1124 - 0.20}{\sqrt{(0.20)(0.80)/1124}} = -0.43, \) so fail to reject \( H_0. \)

7.1–18  (a) Under \( H_0, \) \( \hat{p} = (351 + 41)/800 = 0.49; \)

\[
|z| = \frac{|351/605 - 41/195|}{\sqrt{(0.49)(0.51)(1/605 + 1/195)}} = \frac{|0.580 - 0.210|}{0.0412} = 8.99. \]
Since 8.99 > 1.96, reject \( H_0. \)

(b) \( 0.58 - 0.21 \pm 1.96\sqrt{\frac{(0.58)(0.42)}{605} + \frac{(0.21)(0.79}{195}} = 0.37 \pm 1.96\sqrt{0.000403 + 0.000851} \)
\( 0.37 \pm 0.07 \) or [0.30, 0.44].
It is in agreement with (a).

(c) \( 0.49 \pm 1.96\sqrt{(0.49)(0.51)/800} \)
\( 0.49 \pm 0.035 \) or [0.455, 0.525].
Tests of Statistical Hypotheses

7.1–20 (a) \[ z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1 - \hat{p})(1/n_1 + 1/n_2)}} \geq 1.645; \]
(b) \[ z = \frac{0.15 - 0.11}{\sqrt{(0.1325)(0.8675)(1/900 + 1/700)}} = 2.341 > 1.645, \text{ reject } H_0. \]
(c) \[ z = 2.341 > 2.326, \text{ reject } H_0. \]
(d) The p-value \( \approx P(Z \geq 2.341) = 0.0096. \)

7.1–22 (a) \[ P(\text{at least one match}) = 1 - P(\text{no matches}) = 1 - \frac{52}{52} \frac{51}{52} \frac{50}{52} \frac{49}{52} \frac{48}{52} = 0.259. \]

7.1–24 \[ z = \frac{204/300 - 0.73}{\sqrt{(0.73)(0.27)/300}} = -0.05 = -1.95; \]
p-value \( \approx P(Z < -1.95) = 0.0256 < \alpha = 0.05 \) so we reject \( H_0. \) That is, the test indicates that there is progress.

7.2 Tests about One Mean and One Variance

7.2–2 (a) The critical region is
\[ z = \frac{\bar{x} - 13.0}{0.2/\sqrt{n}} \leq -1.96; \]
(b) The observed value of \( z, \)
\[ z = \frac{12.9 - 13.0}{0.04} = -2.5, \]
is less that -1.96 so we reject \( H_0. \)
(c) The p-value of this test is \( P(Z \leq -2.50) = 0.0062. \)

7.2–4 (a) \[ |t| = \frac{|\bar{x} - 7.5|}{s/\sqrt{10}} \geq t_{0.025}(9) = 2.262. \]

\[ \begin{array}{c}
\alpha/2 = 0.025 \\
\alpha/2 = 0.025
\end{array} \]

Figure 7.2–4: The critical region is \(|t| \geq 2.262 \)

(b) \[ |t| = \frac{|7.55 - 7.5|}{0.1027/\sqrt{10}} = 1.54 < 2.262, \text{ do not reject } H_0. \]
(c) A 95% confidence interval for \( \mu \) is
\[ \left[ 7.55 - 2.262 \left( \frac{0.1027}{\sqrt{10}} \right), \ 7.55 + 2.262 \left( \frac{0.1027}{\sqrt{10}} \right) \right] = [7.48, \ 7.62]. \]
Hence, \( \mu = 7.50 \) is contained in this interval. We could have obtained the same conclusion from our answer to part (b).
7.2-6 (a) \( H_0: \mu = 3.4; \)
(b) \( H_1: \mu > 3.4; \)
(c) \( t = (\bar{x} - 3.4)/(s/3); \)
(d) \( t \geq 1.860; \)

![Figure 7.2-6](image)

Figure 7.2-6: The critical region is \( t \geq 1.860 \)

(e) \( t = \frac{3.556 - 3.4}{0.167/3} = 2.802; \)
(f) \( 2.802 > 1.860, \) reject \( H_0; \)
(g) \( 0.01 < p\text{-value} < 0.025, \) \( p\text{-value} = 0.0116. \)

7.2-8 (a) \( t = \frac{\bar{x} - 3315}{s/\sqrt{11}} \geq 2.764; \)
(b) \( t = \frac{3385.91 - 3315}{336.32/\sqrt{11}} = 0.699 < 2.764, \) do not reject \( H_0; \)
(c) \( p\text{-value} \approx 0.25 \) because \( t_{0.25}(10) = 0.700. \)
7.2–10 (a) \[ |t| = \frac{|\bar{x} - 125|}{s/\sqrt{15}} \geq t_{0.025}(14) = 2.145. \]

Figure 7.2–10: The critical region is \(|t| \geq 2.145\)

(b) \[ |t| = \frac{|127.667 - 125|}{9.597/\sqrt{15}} = 1.076 < 2.145, \text{ do not reject } H_0. \]

7.2–12 (a) The test statistic and critical region are given by

\[ t = \frac{\bar{x} - 5.70}{s/\sqrt{8}} \geq 1.895. \]

(b) The observed value of the test statistic is

\[ t = \frac{5.869 - 5.70}{0.19737/\sqrt{8}} = 2.42. \]

(c) The p-value is a little less than 0.025. Using Minitab, the p-value = 0.023.

Figure 7.2–12: A \(T(7)\) p.d.f. showing the critical region on the left, p-value on the right
7.2–14 The critical region is

\[
t = \frac{\bar{d} - 0}{s_d / \sqrt{17}} \geq 1.746.
\]

Since \( \bar{d} = 4.765 \) and \( s_d = 9.087 \), \( t = 2.162 > 1.746 \) and we reject \( H_0 \).

7.2–16 (a) The critical region is

\[
t = \frac{\bar{d} - 0}{s_d / \sqrt{20}} \leq -1.729.
\]

(b) Since \( \bar{d} = -0.290 \), \( s_d = 0.6504 \), \( t = -1.994 < -1.729 \), so we reject \( H_0 \).

(c) Since \( t = -1.994 > -2.539 \), we would fail to reject \( H_0 \).

(d) From Table VI, \( 0.025 < p\text{-value} < 0.05 \). In fact, \( p\text{-value} = 0.0304 \).

7.3 Tests of the Equality of Two Means

7.3–2 (a) \( t = \frac{x - \bar{y}}{\sqrt{\frac{15s_x^2 + 12s_y^2}{27} \left( \frac{1}{16} + \frac{1}{13} \right)}} \leq t_{0.01}(27) = 2.473; \)

(b) \( t = \frac{415.16 - 347.40}{\sqrt{\frac{15(1356.75) + 12(692.21)}{27} \left( \frac{1}{16} + \frac{1}{13} \right)}} = 5.570 > 2.473 \), reject \( H_0 \).

(c) \( c = \frac{1356.75}{1356.75 + 692.21} = 0.662, \)
\[
\frac{1}{r} = \frac{0.662^2}{15} + \frac{0.338^2}{12} = 0.0387,
\]
\( r = 25. \)

The critical region is therefore \( t \geq t_{0.01}(25) = 2.485 \). Since \( t = 5.570 > 2.485 \), we again reject \( H_0 \).

7.3–4 (a) \( t = \frac{x - \bar{y}}{\sqrt{\frac{12s_x^2 + 15s_y^2}{27} \left( \frac{1}{13} + \frac{1}{16} \right)}} \leq -t_{0.05}(27) = -1.703; \)
Tests of Statistical Hypotheses

(b) \[ t = \frac{72.9 - 81.7}{\sqrt{\frac{(12)(25.6)^2 + (15)(28.3)^2}{27}\left(\frac{1}{13} + \frac{1}{16}\right)}} = -0.869 > -1.703, \] do not reject \( H_0; \)

(c) \( 0.10 < p\text{-value} < 0.25; \)

7.3–6 (a) Assuming \( \sigma^2_x = \sigma^2_y, \)

\[ |t| = \frac{|\bar{x} - \bar{y}|}{\sqrt{\frac{9s_x^2 + 9s_y^2}{18}\left(\frac{1}{10} + \frac{1}{10}\right)}} \geq t_{0.025}(18) = 2.101; \]

(b) \( | -2.151 | > 2.101, \) reject \( H_0; \)

(c) \( 0.01 < p\text{-value} < 0.05; \)

(d)

\[ \begin{array}{c}
X \\
\hline
110 & 120 & 130 & 140 & 150 \\
Y
\end{array} \]

Figure 7.3–6: Box-and-whisker diagram for stud 3 (X) and stud 4 (Y) forces

7.3–8 (a) For these data, \( \bar{x} = 1511.7143, \) \( \bar{y} = 1118.400, \) \( s_x^2 = 49.669.90476, \) \( s_y^2 = 15297.6000. \) If we assume equal variances,

\[ t = \frac{|\bar{x} - \bar{y}|}{\sqrt{\frac{6s_x^2 + 9s_y^2}{15}\left(\frac{1}{7} + \frac{1}{10}\right)}} = 4.683 > 2.131 = t_{0.025}(15) \]

and we reject \( \mu_x = \mu_y. \)

If we use the approximating \( t \) and Welch’s formula for the number of degrees of freedom given by Equation 6.3-1 in the text, \( r = |8.599| = 8 \) degrees of freedom. We then have that \( t = 4.683 > t_{0.025}(8) = 2.306 \) and we reject \( H_0. \)

(b) No and yes so that the answers are compatible.

7.3–10 \[ t = \frac{\bar{x} - \bar{y}}{\sqrt{\frac{24s_x^2 + 28s_y^2}{52}\left(\frac{1}{25} + \frac{1}{29}\right)}} = 3.402 > 2.326 = z_{0.01}, \]

reject \( \mu_x = \mu_y. \)
7.3–12 (a) $t = \frac{8.0489 - 8.0700}{\sqrt{\frac{8(0.00139) + 8(0.00050)}{16}} \sqrt{\frac{1}{9} + \frac{1}{9}}} = -1.46$. Since $-1.337 < -1.46 < -1.746$, $0.05 < p$-value $< 0.10$. In fact, $p$-value $= 0.082$. We would fail to reject $H_0$ at an $\alpha = 0.05$ significance level but we would reject at $\alpha = 0.10$.

(b) The following figure confirms our answer.

![Box-and-whisker diagram for lengths of columns](image)

7.3–14 $t = \frac{4.1633 - 5.1050}{\sqrt{\frac{11(0.91426) + 7(2.59149)}{18}} \sqrt{\frac{1}{12} + \frac{1}{8}}} = -1.648$. Since $-1.330 < -1.648 < -1.734$, $0.05 < p$-value $< 0.10$. In fact, $p$-value $= 0.058$. We would fail to reject $H_0$ at an $\alpha = 0.05$ significance level.

7.3–16 (a) $\frac{\bar{y} - \bar{x}}{s_x^2/s_0^2 + s_y^2/s_0^2} > 1.96$;

(b) $8.98 > 1.96$, reject $\mu_x = \mu_y$.

(c) Yes.

![Lengths of male (X) and female (Y) green lynx spiders](image)
7.3–18 (a) For these data, $\bar{x} = 5.9947$, $\bar{y} = 4.3921$, $s^2_x = 6.0191$, $s^2_y = 1.9776$. Using the number of degrees of freedom given by Equation 6.3-1 (Welch) we have that $r = [28.68] = 28$. We have

$$t = \frac{5.9947 - 4.3921}{\sqrt{6.0191/19 + 1.9776/19}} = 2.47 > 2.467 = t_{0.01}(28)$$

so we reject $H_0$.

(b)

![Figure 7.3-18: Tree dispersion distances in meters](image)

7.3–20 (a) For these data, $\bar{x} = 5.128$, $\bar{y} = 4.233$, $s^2_x = 1.2354$, $s^2_y = 1.2438$. Since $t = 2.46$, we clearly reject $H_0$. Minitab gives a $p$-value of 0.01.

(b)

![Figure 7.3–20: Times for old procedure and new procedure](image)

(c) We reject $H_0$ and conclude that the response times for the new procedure are less than for the old procedure.

7.4 Tests for Variances

7.4–2 (a) Reject $H_0$ if $\chi^2 = \frac{10s^2_y}{525} \leq \chi^2_{0.95}(10) = 3.940$.

The observed value of the test statistic, $\chi^2 = 4.223 > 3.940$, so we fail to reject $H_0$.

(b) $F = \frac{s^2_x}{s^2_y} = \frac{113108.4909}{116388.8545} = 0.9718$ so we clearly accept the equality of the variances.
(c) The critical region is \( |t| \geq t_{0.025}(20) = 2.086 \).

\[
t = \frac{x - y - 0}{\sqrt{\frac{s_x^2}{11} + \frac{s_y^2}{11}}} = \frac{3385.909 - 3729.364}{144.442} = -2.378.
\]

Since \( | -2.378 | > 2.086 \), we reject the null hypothesis. The \( p \)-value for this test is 0.0275.

7.4–4 (a) The critical region is

\[
\chi^2 = \frac{19s^2}{(0.095)^2} \leq 10.12.
\]

The observed value of the test statistic,

\[
\chi^2 = \frac{19(0.065)^2}{(0.095)^2} = 8.895,
\]

is less than 10.12, so the company was successful.

(b) Since \( \chi^2_{0.975}(19) = 8.907 \), \( p \)-value \( \approx 0.025 \).

7.4–6 \( \text{Var}(S^2) = \text{Var} \left( \frac{100}{22} \left( \frac{22S^2}{100} \right) \right) = \left( \frac{100}{22} \right)^2 \left( \frac{2}{22} \right) = 10,000/11. \)

7.4–8 \( \frac{s_x^2}{s_y^2} = \frac{9.88}{4.08} = 2.42 < 3.28 = F_{0.05}(12,8) \), so fail to reject \( H_0. \)

7.4–10 \( F = \frac{9201}{4856} = 1.895 < 3.37 = F_{0.05}(6,9) \) so we fail to reject \( H_0. \)

7.5 One-Factor Analysis of Variance

7.5–2

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>DF</th>
<th>MS</th>
<th>( F )</th>
<th>( p )-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
<td>388.2805</td>
<td>3</td>
<td>129.4268</td>
<td>4.9078</td>
<td>0.0188</td>
</tr>
<tr>
<td>Error</td>
<td>316.4597</td>
<td>12</td>
<td>26.3716</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>704.7402</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\( F = 4.9078 > 3.49 = F_{0.05}(3,12) \), reject \( H_0. \).

7.5–4

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>DF</th>
<th>MS</th>
<th>( F )</th>
<th>( p )-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
<td>150</td>
<td>2</td>
<td>75</td>
<td>75</td>
<td>0.00006</td>
</tr>
<tr>
<td>Error</td>
<td>6</td>
<td>6</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>156</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7.5–6

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>DF</th>
<th>MS</th>
<th>( F )</th>
<th>( p )-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
<td>184.8</td>
<td>2</td>
<td>92.4</td>
<td>15.4</td>
<td>0.00015</td>
</tr>
<tr>
<td>Error</td>
<td>102.0</td>
<td>17</td>
<td>6.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>286.8</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\( F = 15.4 > 3.59 = F_{0.05}(2,17) \), reject \( H_0. \).
7.5–8  (a) $F \geq F_{0.05}(3, 24) = 3.01$; 
(b) 

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>DF</th>
<th>MS</th>
<th>$F$</th>
<th>$p$-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
<td>12,280.86</td>
<td>3</td>
<td>4,093.62</td>
<td>3.455</td>
<td>0.0323</td>
</tr>
<tr>
<td>Error</td>
<td>28,434.57</td>
<td>24</td>
<td>1,184.77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>40,715.43</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$F = 3.455 > 3.01$, reject $H_0$;
(c) $0.025 < p$-value $< 0.05$.

(d) 

$X_1$  

$X_2$  

$X_3$  

$X_4$  

140 160 180 200 220 240 260 280

Figure 7.5–8: Box-and-whisker diagrams for cholesterol levels

7.5–10 (a) $F \geq F_{0.05}(4, 30) = 2.69$; 
(b) 

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>DF</th>
<th>MS</th>
<th>$F$</th>
<th>$p$-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
<td>0.00442</td>
<td>4</td>
<td>0.00111</td>
<td>2.85</td>
<td>0.0403</td>
</tr>
<tr>
<td>Error</td>
<td>0.01157</td>
<td>30</td>
<td>0.00039</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.01599</td>
<td>34</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$F = 2.85 > 2.69$, reject $H_0$;

(c) 

$X_1$  

$X_2$  

$X_3$  

$X_4$  

$X_5$  

1.02 1.04 1.06 1.08 1.10

Figure 7.5–10: Box-and-whisker diagrams for nail weights
7.5–12 (a) \[ t = \frac{92.143 - 103.000}{\sqrt{\frac{6(69.139) + 6(57.669)}{12}} \left(\frac{1}{7} + \frac{1}{7}\right)} = -2.55 < -2.179, \text{ reject } H_0. \]

\[ F = \frac{412.517}{63.4048} = 6.507 > 4.75, \text{ reject } H_0. \]

The \( F \) and the \( t \) tests give the same results since \( t^2 = F \).

(b) \[ F = \frac{86.3336}{114.8889} = 0.7515 < 3.55, \text{ do not reject } H_0. \]

7.5–14 (a)

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>DF</th>
<th>MS</th>
<th>( F )</th>
<th>( p )-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
<td>122.1956</td>
<td>2</td>
<td>61.0978</td>
<td>2.130</td>
<td>0.136</td>
</tr>
<tr>
<td>Error</td>
<td>860.4799</td>
<td>30</td>
<td>28.6827</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>982.6755</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[ F = 2.130 < 3.32 = F_{0.05}(2, 30), \text{ fail to reject } H_0; \]

(b) 

\[ D 6 \]

\[ D 7 \]

\[ D22 \]

\[ 165 \quad 170 \quad 175 \quad 180 \quad 185 \]

Figure 7.5–14: Box-and-whisker diagrams for resistances on three days

7.5–16 (a)

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>DF</th>
<th>MS</th>
<th>( F )</th>
<th>( p )-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Worker</td>
<td>1.5474</td>
<td>2</td>
<td>0.7737</td>
<td>1.0794</td>
<td>0.3557</td>
</tr>
<tr>
<td>Error</td>
<td>17.2022</td>
<td>24</td>
<td>0.7168</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>18.7496</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[ F = 1.0794 < 3.40 = F_{0.05}(2, 24), \text{ fail to reject } H_0; \]
Tests of Statistical Hypotheses

(b)

A

B

C

Figure 7.5–16: Box-and-whisker diagrams for workers A, B, and C

The box plot confirms the answer from part (a).

7.6 Two-Factor Analysis of Variance

7.6–2

<table>
<thead>
<tr>
<th>6 3 7 8</th>
<th>( \mu + \alpha_i )</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 7 11 12</td>
<td>10</td>
</tr>
<tr>
<td>8 5 9 10</td>
<td>8</td>
</tr>
<tr>
<td>( \mu + \beta_j )</td>
<td>8 5 9 10</td>
</tr>
</tbody>
</table>

So \( \alpha_1 = -2 \), \( \alpha_2 = 2 \), \( \alpha_3 = 0 \) and \( \beta_1 = 0 \), \( \beta_2 = -3 \), \( \beta_3 = 1 \), \( \beta_4 = 2 \).

7.6–4 

\[
\sum_{i=1}^{a} \sum_{j=1}^{b} (\overline{X}_i - \overline{X}_.) (X_{ij} - \overline{X}_i - \overline{X}_j + \overline{X}_.)
\]

\[
= \sum_{i=1}^{a} (\overline{X}_i - \overline{X}_.) \sum_{j=1}^{b} [(X_{ij} - \overline{X}_i) - (\overline{X}_j - \overline{X}_.)]
\]

\[
= \sum_{i=1}^{a} (\overline{X}_i - \overline{X}_.) \left\{ \sum_{j=1}^{b} (X_{ij} - \overline{X}_i) - \sum_{j=1}^{b} (\overline{X}_j - \overline{X}_.) \right\}
\]

\[
= \sum_{i=1}^{a} (\overline{X}_i - \overline{X}_.) (0 - 0) = 0;
\]

\[
\sum_{i=1}^{a} \sum_{j=1}^{b} (\overline{X}_j - \overline{X}_.) (X_{ij} - \overline{X}_i - \overline{X}_j + \overline{X}_.) = 0, \text{ similarly;}
\]

\[
\sum_{i=1}^{a} \sum_{j=1}^{b} (\overline{X}_i - \overline{X}_.) (\overline{X}_j - \overline{X}_.) = \left\{ \sum_{i=1}^{a} (\overline{X}_i - \overline{X}_.) \right\} \left\{ \sum_{j=1}^{b} (\overline{X}_j - \overline{X}_.) \right\} = (0)(0) = 0 .
\]

7.6–6

<table>
<thead>
<tr>
<th>6 7 7 12</th>
<th>( \mu + \alpha_i )</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 3 11 8</td>
<td>8</td>
</tr>
<tr>
<td>8 5 9 10</td>
<td>8</td>
</tr>
<tr>
<td>( \mu + \beta_j )</td>
<td>8 5 9 10</td>
</tr>
</tbody>
</table>

So \( \alpha_1 = \alpha_2 = \alpha_3 = 0 \) and \( \beta_1 = 0 \), \( \beta_2 = -3 \), \( \beta_3 = 1 \), \( \beta_4 = 2 \) as in Exercise 8.7–2. However, \( \gamma_{11} = -2 \) because \( 8 + 0 + 0 + (-2) = 6 \). Similarly we obtain the other \( \gamma_{ij}'s \):

7.6–8

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>DF</th>
<th>MS</th>
<th>F</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row (A)</td>
<td>99.7805</td>
<td>3</td>
<td>49.8903</td>
<td>4.807</td>
<td>0.021</td>
</tr>
<tr>
<td>Col (B)</td>
<td>70.1955</td>
<td>1</td>
<td>70.1955</td>
<td>6.763</td>
<td>0.018</td>
</tr>
<tr>
<td>Int(AB)</td>
<td>202.9827</td>
<td>2</td>
<td>101.4914</td>
<td>9.778</td>
<td>0.001</td>
</tr>
<tr>
<td>Error</td>
<td>186.8306</td>
<td>18</td>
<td>10.3795</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>559.7894</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Since $F_{AB} = 9.778 > 3.57$, $H_{AB}$ is rejected. Most statisticians would probably not proceed to test $H_A$ and $H_B$.

7.6–10

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>DF</th>
<th>MS</th>
<th>F</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row (A)</td>
<td>5,103.0000</td>
<td>1</td>
<td>5,103.0000</td>
<td>4.307</td>
<td>0.049</td>
</tr>
<tr>
<td>Col (B)</td>
<td>6,121.2857</td>
<td>1</td>
<td>6,121.2857</td>
<td>5.167</td>
<td>0.032</td>
</tr>
<tr>
<td>Int(AB)</td>
<td>1,056.5714</td>
<td>1</td>
<td>1,056.5714</td>
<td>0.892</td>
<td>0.354</td>
</tr>
<tr>
<td>Error</td>
<td>28,434.5714</td>
<td>24</td>
<td>1,184.7738</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>40,715.4286</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Since $F = 0.892 < F_{0.05}(1, 24) = 4.26$, do not reject $H_{AB}$;

(b) Since $F = 4.307 > F_{0.05}(1, 24) = 4.26$, reject $H_A$;

(c) Since $F = 5.167 > F_{0.05}(1, 24) = 4.26$, reject $H_B$.

7.7 Tests Concerning Regression and Correlation

7.7–2 The critical region is $t_1 \geq t_{0.25}(8) = 2.306$. From Exercise 7.8–2,

\[
\hat{\beta} = 4.64/5.04 \quad \text{and} \quad n\sigma^2 = 1.84924; \quad \text{also} \quad \sum_{i=1}^{10} (x_i - \bar{x})^2 = 5.04, \quad \text{so} \\
\sqrt{\frac{4.64/5.04}{1.84924}} = 0.9206 = 4.299.
\]

Since $t_1 = 4.299 > 2.306$, we reject $H_0$. 

7.7–4 The critical region is \( t_1 \geq t_{0.01}(18) = 2.552 \). Since

\[
\hat{\beta} = \frac{24.8}{40}, \quad n\sigma^2 = 5.1895, \quad \text{and} \quad \sum_{i=1}^{10} (x_1 - \bar{x})^2 = 40,
\]

it follows that

\[
t_1 = \frac{24.8/40}{\sqrt{\frac{5.1895}{18(40)}}} = 7.303.
\]

Since \( t_1 = 7.303 > 2.552 \), we reject \( H_0 \). We could also construct the following table.

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>DF</th>
<th>MS</th>
<th>( F )</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>15.3760</td>
<td>1</td>
<td>15.3760</td>
<td>53.3323</td>
<td>0.0000</td>
</tr>
<tr>
<td>Error</td>
<td>5.1895</td>
<td>18</td>
<td>0.2883</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>20.5655</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note that \( t_1^2 = 7.303^2 = 53.3338 \approx F = 53.3323 \).

7.7–6 For these data, \( r = -0.413 \). Since \(|r| = 0.413 < 0.7292\), do not reject \( H_0 \).

7.7–8 Following the suggestion given in the hint, the expression equals

\[
(n - 1)S^2_Y = \frac{2R_s x S_Y}{s_x^2} (n - 1)R_s x S_Y + \frac{R^2 s_x^2 S^2_Y (n - 1) s_x^2}{s_x^2} = (n - 1)S^2_Y (1 - 2R^2 + R^2) = (n - 1)S^2_Y (1 - R^2).
\]

7.7–10 \( u(R) = u(\rho) + (R - \rho)u'(\rho) \),

\[
\text{Var}[u(\rho) + (R - \rho)u'(\rho)] = [u'(\rho)]^2 \text{Var}(R) = [u'(\rho)]^2 \frac{(1 - \rho^2)^2}{n} = c, \quad \text{which is free of } \rho,
\]

\[
u'(\rho) = \frac{k/2}{1 - \rho} + \frac{k/2}{1 + \rho},
\]

\[
u(\rho) = \frac{k}{2} \ln(1 - \rho) + \frac{k}{2} \ln(1 + \rho) = \frac{k}{2} \ln \left( \frac{1 + \rho}{1 - \rho} \right).
\]

Thus, taking \( k = 1 \),

\[
u(R) = \left( \frac{1}{2} \right) \ln \left[ \frac{1 + R}{1 - R} \right]
\]

has a variance almost free of \( \rho \).

7.7–12 (a) \( r = -0.4906, |r| = 0.4906 > 0.4258 \), reject \( H_0 \) at \( \alpha = 0.10 \);

(b) \( |r| = 0.4906 < 0.4973 \), fail to reject \( H_0 \) at \( \alpha = 0.05 \).

7.7–14 (a) \( r = 0.339, |r| = 0.339 < 0.5325 = r_{0.025}(12) \), fail to reject \( H_0 \) at \( \alpha = 0.05 \);

(b) \( r = -0.821 < -0.6613 = r_{0.005}(12) \), reject \( H_0 \) at \( \alpha = 0.005 \);

(c) \( r = 0.149, |r| = 0.149 < 0.5325 = r_{0.025}(12) \), fail to reject \( H_0 \) at \( \alpha = 0.05 \).
Chapter 8

Nonparametric Methods

8.1 Chi-Square Goodness of Fit Tests

8.1–2 \[ q_4 = \frac{(224 - 232)^2}{232} + \frac{(119 - 116)^2}{116} + \frac{(130 - 116)^2}{116} + \frac{(48 - 58)^2}{58} + \frac{(59 - 58)^2}{58} \]

= 3.784.

The null hypothesis will not be rejected at any reasonable significance level. Note that \( E(Q_4) = 4 \) when \( H_0 \) is true.

8.1–4 \[ q_3 = \frac{(124 - 117)^2}{117} + \frac{(30 - 39)^2}{39} + \frac{(43 - 39)^2}{39} + \frac{(11 - 13)^2}{13} \]

= 0.419 + 0.410 + 0.308 = 3.214 < 7.815 = \( \chi^2_{0.05}(3) \).

Thus we do not reject the Mendelian theory with these data.

8.1–6 We first find that \( \hat{p} = 274/425 = 0.6447 \). Using Table II with \( p = 0.65 \) the hypothesized probabilities are \( p_1 = P(X \leq 1) = 0.0540, p_2 = P(X = 2) = 0.1812, p_3 = P(X = 3) = 0.3364, p_4 = P(X = 4) = 0.3124, p_5 = P(X = 5) = 0.1160 \). Thus the respective expected values are 4.590, 15.402, 28.594, 26.554, and 9.860. One degree of freedom is lost because \( p \) was estimated. The value of the chi-square goodness of fit statistic is:

\[ q = \frac{(6 - 4.590)^2}{4.590} + \frac{(13 - 15.402)^2}{15.402} + \frac{(30 - 28.594)^2}{28.594} + \frac{(28 - 26.554)^2}{26.554} + \frac{(8 - 9.860)^2}{9.860} \]

= 1.3065 < 7.815 = \( \chi^2_{0.05}(3) \)

Do not reject the hypothesis that \( X \) is \( b(5, \ p) \). The 95% confidence interval for \( p \) is

\[ 0.6447 \pm 1.96 \sqrt{(0.6447)(0.3553)/425} \] or \[ [0.599, 0.690] \].

The pennies that were used were minted 1998 or earlier. See Figure 8.1-6. Repeat this experiment with similar pennies or with newer pennies and compare your results with those obtained by these students.
Figure 8.1–6: The $b(5, 0.65)$ probability histogram and the relative frequency histogram (shaded)

8.1–8 The respective probabilities and expected frequencies are 0.050, 0.149, 0.224, 0.224, 0.168, 0.101, 0.050, 0.022, 0.012 and 15.0, 44.7, 67.2, 67.2, 50.4, 30.3, 15.0, 6.6, 3.6. The last two cells could be combined to give an expected frequency of 10.2. From Exercise 3.5–12, the respective frequencies are 17, 47, 63, 63, 49, 28, 21, and 12 giving

$$q^2 = \frac{(17-15.0)^2}{15.0} + \frac{(47-44.7)^2}{44.7} + \cdots + \frac{(12-10.2)^2}{10.2} = 3.841.$$ 

Since $3.841 < 14.07 = \chi^2_{0.05}(7)$, do not reject. The sample mean is $\bar{x} = 3.03$ and the sample variance is $s^2 = 3.19$ which also supports the hypothesis. The following figure compares the probability histogram with the relative frequency histogram of the data.

Figure 8.1–8: The Poisson probability histogram, $\lambda = 3$, and relative frequency histogram (shaded)
8.1–10 We shall use 10 sets of equal probability.

<table>
<thead>
<tr>
<th>$A_i$</th>
<th>Observed</th>
<th>Expected</th>
<th>$q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0.00, 4.45)</td>
<td>8</td>
<td>9</td>
<td>1/9</td>
</tr>
<tr>
<td>[4.45, 9.42]</td>
<td>10</td>
<td>9</td>
<td>1/9</td>
</tr>
<tr>
<td>[9.42, 15.05]</td>
<td>9</td>
<td>9</td>
<td>0/9</td>
</tr>
<tr>
<td>[15.05, 21.56]</td>
<td>8</td>
<td>9</td>
<td>1/9</td>
</tr>
<tr>
<td>[29.25, 38.67]</td>
<td>11</td>
<td>9</td>
<td>4/9</td>
</tr>
<tr>
<td>[38.67, 50.81]</td>
<td>8</td>
<td>9</td>
<td>1/9</td>
</tr>
<tr>
<td>[50.81, 67.92]</td>
<td>12</td>
<td>9</td>
<td>9/9</td>
</tr>
<tr>
<td>[67.92, 91.17]</td>
<td>10</td>
<td>9</td>
<td>1/9</td>
</tr>
<tr>
<td>[91.17, ∞)</td>
<td>7</td>
<td>9</td>
<td>4/9</td>
</tr>
</tbody>
</table>

Since $2.89 < 15.51 = \chi^2_{0.05}(8)$, we accept the hypothesis that the distribution of $X$ is exponential. Note that one degree of freedom is lost because we had to estimate $\theta$.

![Exponential p.d.f., $\hat{\theta} = 42.2$, and relative frequency histogram (shaded)](image)

8.1–12 We shall use 10 sets of equal probability.

<table>
<thead>
<tr>
<th>$A_i$</th>
<th>Observed</th>
<th>Expected</th>
<th>$q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>($-\infty$, 399.40)</td>
<td>10</td>
<td>9</td>
<td>1/9</td>
</tr>
<tr>
<td>[399.40, 437.92]</td>
<td>7</td>
<td>9</td>
<td>4/9</td>
</tr>
<tr>
<td>[437.92, 465.71]</td>
<td>9</td>
<td>9</td>
<td>0/9</td>
</tr>
<tr>
<td>[465.71, 489.44]</td>
<td>9</td>
<td>9</td>
<td>0/9</td>
</tr>
<tr>
<td>[489.44, 511.63]</td>
<td>13</td>
<td>9</td>
<td>16/9</td>
</tr>
<tr>
<td>[511.63, 533.82]</td>
<td>8</td>
<td>9</td>
<td>1/9</td>
</tr>
<tr>
<td>[533.82, 557.55]</td>
<td>7</td>
<td>9</td>
<td>4/9</td>
</tr>
<tr>
<td>[557.55, 585.34]</td>
<td>6</td>
<td>9</td>
<td>9/9</td>
</tr>
<tr>
<td>[585.34, 623.86]</td>
<td>11</td>
<td>9</td>
<td>4/9</td>
</tr>
<tr>
<td>[623.86, ∞)</td>
<td>10</td>
<td>9</td>
<td>1/9</td>
</tr>
</tbody>
</table>

Since $4.44 < 14.07 = \chi^2_{0.05}(7)$, we accept the hypothesis that the distribution of $X$ is $N(\mu, \sigma^2)$. Note that 2 degrees of freedom are lost because 2 parameters were estimated.
Figure 8.1–12: The $N(511.633, 87.576^2)$ p.d.f. and the relative frequency histogram (shaded)

8.1–14 (a) We shall use 5 classes with equal probability.

<table>
<thead>
<tr>
<th>$A_i$</th>
<th>Observed</th>
<th>Expected</th>
<th>$q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0, 25.25)</td>
<td>4</td>
<td>6.2</td>
<td>0.781</td>
</tr>
<tr>
<td>[25.25, 57.81)</td>
<td>9</td>
<td>6.2</td>
<td>1.264</td>
</tr>
<tr>
<td>[57.81, 103.69)</td>
<td>5</td>
<td>6.2</td>
<td>0.232</td>
</tr>
<tr>
<td>[193.69, 182.13]</td>
<td>6</td>
<td>6.2</td>
<td>0.006</td>
</tr>
<tr>
<td>[182.13, $\infty$)</td>
<td>7</td>
<td>6.2</td>
<td>0.103</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>31.0</td>
<td>2.386</td>
</tr>
</tbody>
</table>

The $p$-value for $5 - 1 - 1 = 3$ degrees of freedom is 0.496 so we fail to reject the null hypothesis.

(b) We shall use 10 classes with equal probability.

<table>
<thead>
<tr>
<th>$A_i$</th>
<th>Observed</th>
<th>Expected</th>
<th>$q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0, 22.34)</td>
<td>3</td>
<td>3.9</td>
<td>0.208</td>
</tr>
<tr>
<td>[22.34, 34.62)</td>
<td>3</td>
<td>3.9</td>
<td>0.208</td>
</tr>
<tr>
<td>[34.62, 46.09)</td>
<td>8</td>
<td>3.9</td>
<td>4.310</td>
</tr>
<tr>
<td>[46.09, 57.81)</td>
<td>4</td>
<td>3.9</td>
<td>0.003</td>
</tr>
<tr>
<td>[57.81, 70.49)</td>
<td>2</td>
<td>3.9</td>
<td>0.926</td>
</tr>
<tr>
<td>[70.49, 84.94)</td>
<td>4</td>
<td>3.9</td>
<td>0.003</td>
</tr>
<tr>
<td>[84.94, 102.45)</td>
<td>4</td>
<td>3.9</td>
<td>0.003</td>
</tr>
<tr>
<td>[102.45, 125.76)</td>
<td>4</td>
<td>3.9</td>
<td>0.003</td>
</tr>
<tr>
<td>[125.76, 163.37]</td>
<td>2</td>
<td>3.9</td>
<td>0.926</td>
</tr>
<tr>
<td>[163.37, $\infty$)</td>
<td>5</td>
<td>3.9</td>
<td>0.310</td>
</tr>
<tr>
<td></td>
<td>39</td>
<td>39.0</td>
<td>6.900</td>
</tr>
</tbody>
</table>

The $p$-value for $10 - 1 - 1 = 9$ degrees of freedom is 0.648 so we fail to reject the null hypothesis.
8.1–16 We shall use 10 classes with equal probability. For these data, \( \bar{x} = 5.833 \) and \( s^2 = 2.7598 \).

<table>
<thead>
<tr>
<th>( A_i )</th>
<th>Observed</th>
<th>Expected</th>
<th>( q )</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0, 3.704)</td>
<td>8</td>
<td>10</td>
<td>0.4</td>
</tr>
<tr>
<td>[3.704, 4.435)</td>
<td>10</td>
<td>10</td>
<td>0.0</td>
</tr>
<tr>
<td>[4.435, 4.962)</td>
<td>11</td>
<td>10</td>
<td>0.1</td>
</tr>
<tr>
<td>[4.962, 5.412)</td>
<td>20</td>
<td>10</td>
<td>10.0</td>
</tr>
<tr>
<td>[5.412, 5.833)</td>
<td>7</td>
<td>10</td>
<td>0.9</td>
</tr>
<tr>
<td>[5.833, 6.254)</td>
<td>8</td>
<td>10</td>
<td>0.4</td>
</tr>
<tr>
<td>[6.254, 6.704)</td>
<td>12</td>
<td>10</td>
<td>0.4</td>
</tr>
<tr>
<td>[6.704, 7.231)</td>
<td>4</td>
<td>10</td>
<td>0.4</td>
</tr>
<tr>
<td>[7.231, 7.962)</td>
<td>8</td>
<td>10</td>
<td>0.4</td>
</tr>
<tr>
<td>[7.962, 12)</td>
<td>12</td>
<td>10</td>
<td>0.4</td>
</tr>
<tr>
<td>Totals</td>
<td>100</td>
<td>100</td>
<td>16.6</td>
</tr>
</tbody>
</table>

The \( p \)-value for \( 10 - 1 - 1 - 1 = 7 \) degrees of freedom is 0.0202 so we reject the null hypothesis.

8.2 Contingency Tables

8.2–2 \( 10.18 < 20.48 = \chi^2_{0.025}(10) \), accept \( H_0 \).

8.2–4 In the combined sample of 45 observations, the lower third includes those with scores of 61 or lower, the middle third have scores from 62 through 78, and the higher third are those with scores of 79 and above.

<table>
<thead>
<tr>
<th></th>
<th>low</th>
<th>middle</th>
<th>high</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class U</td>
<td>9</td>
<td>4</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>(5)</td>
<td>(5)</td>
<td>(5)</td>
<td></td>
</tr>
<tr>
<td>Class V</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>(5)</td>
<td>(5)</td>
<td>(5)</td>
<td></td>
</tr>
<tr>
<td>Class W</td>
<td>1</td>
<td>6</td>
<td>8</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>(5)</td>
<td>(5)</td>
<td>(5)</td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>45</td>
</tr>
</tbody>
</table>

Thus \( q = 3.2 + 0.2 + 1.8 + 0 + 0 + 0 + 3.2 + 0.2 + 1.8 = 10.4 \).

Since \( q = 10.4 > 9.488 = \chi^2_{0.05}(4) \), we reject the equality of these three distributions. \( (p\text{-value} = 0.034) \).

8.2–6 \( q = 8.410 < 9.488 = \chi^2_{0.05}(10) \), fail to reject \( H_0 \). \( (p\text{-value} = 0.078) \)

8.2–8 \( q = 4.268 > 3.841 = \chi^2_{0.05}(1) \), reject \( H_0 \). \( (p\text{-value} = 0.039) \)

8.2–10 \( q = 7.683 < 9.210 = \chi^2_{0.01}(1) \), fail to reject \( H_0 \). \( (p\text{-value} = 0.021) \)

8.2–12 (a) \( q = 8.006 > 7.815 = \chi^2_{0.05}(3) \), reject \( H_0 \).

(b) \( q = 8.006 < 9.348 = \chi^2_{0.025}(3) \), fail to reject \( H_0 \). \( (p\text{-value} = 0.046) \)

8.2–14 \( q = 8.792 > 7.378 = \chi^2_{0.025}(2) \), reject \( H_0 \). \( (p\text{-value} = 0.012) \)

8.2–16 \( q = 4.242 < 4.605 = \chi^2_{0.10}(2) \), fail to reject \( H_0 \). \( (p\text{-value} = 0.120) \)
8.3 Order Statistics

8.3–2 (a) The location of the median is \((0.5)(17 + 1) = 9\), thus the median is 
\[
\tilde{m} = 5.2.
\]

The location of the first quartile is \((0.25)(17 + 1) = 4.5\). Thus the first quartile is 
\[
\tilde{q}_1 = (0.5)(4.3) + (0.5)(4.7) = 4.5.
\]

The location of the third quartile is \((0.75)(17 + 1) = 13.5\). Thus the third quartile is 
\[
\tilde{q}_3 = (0.5)(5.6) + (0.5)(5.7) = 5.65.
\]

(b) The location of the 35\(^{th}\) percentile is \((0.35)(18) = 6.3\). Thus 
\[
\tilde{p}_{0.35} = (0.7)(4.8) + (0.3)(4.9) = 4.83.
\]

The location of the 65\(^{th}\) percentile is \((0.65)(18) = 11.7\). Thus 
\[
\tilde{p}_{0.65} = (0.3)(5.6) + (0.7)(5.6) = 5.6.
\]

8.3–4 \(g(y) = \sum_{k=3}^{5} \left\{ \frac{6!}{k!(6-k)!}(k)[F(y)]^{k-1}f(y)[1-F(y)]^{6-k} \right\} \)
\[
+ \frac{6!}{k!(6-k)!}[F(y)]^{k}(6-k)[1-F(y)]^{6-k-1}[-f(y)] + 6[F(y)]^{5}f(y)
\]
\[
= \frac{6!}{232!}[F(y)]^{2}f(y)[1-F(y)]^{3} - \frac{6!}{321!}[F(y)]^{3}[1-F(y)]^{2}f(y)
\]
\[
+ \frac{6!}{321!}[F(y)]^{3}f(y)[1-F(y)]^{2} - \frac{6!}{420}[F(y)]^{4}[1-F(y)]^{3}f(y)
\]
\[
+ \frac{6!}{420}[F(y)]^{4}f(y)[1-F(y)]^{3} - \frac{6!}{5!0}[F(y)]^{5}[1-F(y)]^{0}f(y) + 6[F(y)]^{5}f(y)
\]
\[
= \frac{6!}{232!}[F(y)]^{2}[1-F(y)]^{3}f(y), \quad a < y < b.
\]

8.3–6 (a) \(f(x) = x, \quad 0 < x < 1\). Thus 
\[
g_1(w) = n[1-w]^{n-1}(1), \quad 0 < w < 1;
\]
\[
g_n(w) = n[w]^{n-1}(1), \quad 0 < w < 1.
\]

(b) \(E(W_1) = \int_{0}^{1} (w)(n)(1-w)^{n-1} dw\)
\[
= \left[ -w(1-w)^n - \frac{1}{n+1} (1-w)^{n+1} \right]_{0}^{1} = \frac{1}{n+1}.
\]

\(E(W_n) = \int_{0}^{1} (w)(n)w^{n-1} dw = \left[ \frac{n}{n+1} w^{n+1} \right]_{0}^{1} = \frac{n}{n+1}.
\]

(c) Let \(w = w_{\tau}\). The p.d.f. of \(W_{\tau}\) is 
\[
g_{\tau}(w) = \frac{n!}{(r-1)!(n-r)!} [w]^{r-1}[1-w]^{n-r} \cdot 1
\]
\[
= \frac{\Gamma(r+n-r+1)}{\Gamma(r)\Gamma(n-r+1)} w^{r-1}(1-w)^{n-r+1-1}.
\]

Thus \(W_{\tau}\) has a beta distribution with \(\alpha = r, \beta = n - r\).
**8.3–8 (a)** \[ E(W_r^2) = \int_0^1 w^2 \frac{n!}{(r-1)!(n-r)!} w^{r-1}(1-w)^{n-r} \, dw \]
\[ = \frac{r(r+1)}{(n+2)(n+1)} \int_0^1 (n+2)! \frac{(n+2)!}{(r+1)!(n-r)!} w^{r+1}(1-w)^{n-r} \, dw \]
\[ = \frac{r(r+1)}{(n+2)(n+1)} \]

Since the integrand is like that of a p.d.f. of the \((r+2)\)th order statistic of a sample of size \(n+2\) and hence the integral must equal one.

**(b)** \[ \text{Var}(W_r) = \frac{r(r+1)}{(n+2)(n+1)} - \frac{r^2}{(n+1)^2} = \frac{r(n-r+1)}{(n+2)(n+1)^2}. \]

**8.3–10 (a)** \[ 1 - \alpha = P\left[ \chi^2_{\alpha/2}(2m) \leq \frac{\sum_{i=1}^{m} Y_i + (n-m)Y_m}{\chi_{\alpha/2}(2m)} \leq \frac{\sum_{i=1}^{m} Y_i + (n-m)Y_m}{\chi_{1-\alpha/2}(2m)} \right] \]

\[ = P\left[ \frac{\sum_{i=1}^{m} Y_i + (n-m)Y_m}{\chi_{1-\alpha/2}(2m)} \leq \frac{\theta}{2} \leq \frac{\sum_{i=1}^{m} Y_i + (n-m)Y_m}{\chi_{\alpha/2}(2m)} \right] \]

Thus the 100(1 - \alpha)% confidence interval is

\[ \left[ \frac{2(\sum_{i=1}^{m} y_i + (n-m)y_m)}{\chi_{1-\alpha/2}(2m)}, \frac{2(\sum_{i=1}^{m} y_i + (n-m)y_m)}{\chi_{\alpha/2}(2m)} \right]. \]

**(b)** (i) \(n = 4: \left[ \frac{89.840}{15.51}, \frac{89.840}{2.733} \right] = [5.792, 32.872]; \]

(ii) \(n = 5: \left[ \frac{107.036}{18.31}, \frac{107.036}{3.940} \right] = [5.846, 27.166]; \]

(iii) \(n = 6: \left[ \frac{113.116}{21.03}, \frac{113.116}{5.226} \right] = [5.379, 21.645]; \]

(iv) \(n = 7: \left[ \frac{125.516}{23.68}, \frac{125.516}{6.571} \right] = [5.301, 19.102]. \]

The intervals become shorter as we use more information.

**8.3–14 (c)** Let \(\theta = 1/2.\)

\[ E(W_1) = E(\bar{X}) = \mu = \frac{1}{2}; \]

\[ \text{Var}(W_1) = \text{Var}(\bar{X}) = \frac{1/12}{3} = \frac{1}{36}; \]

\[ E(W_2) = \int_0^1 (w \cdot 6w(1-w)) \, dw = \frac{1}{2}; \]

\[ \text{Var}(W_2) = \int_0^1 (w - 1/2)^2 6w(1-w) \, dw = \frac{1}{20}; \]

\[ E(W_3) = \int_0^1 \int_{w_1}^{1/2} 6w(1-w) \, dw \, dw_1 = \frac{1}{2}; \]

\[ \text{Var}(W_3) = \int_0^1 \int_{w_1}^{1/2} 6w(1-w) \, dw \, dw_1 = \left( \frac{1}{2} \right)^2 = \frac{1}{40}. \]
8.4 Distribution-Free Confidence Intervals for Percentiles

8.4–2 (a) \( y_3 = 5.4, y_{10} = 6.0 \) is a 96.14\% confidence interval for the median, \( m \).
(b) \( y_1 = 4.8, y_7 = 5.8 \):
\[
P(Y_1 < \pi_{0.3} < Y_7) = \sum_{k=1}^{6} \binom{12}{k}(0.3)^k(0.7)^{12-k}
\]
\[
= 0.9614 - 0.0138 = 0.9476,
\]
using Table II with \( n = 12 \) and \( p = 0.30 \).

8.4–4 (a) \( y_4 = 80.28, y_{11} = 80.51 \) is a 94.26\% confidence interval for \( m \).
(b) \( y_6 = 80.32, y_{12} = 80.53 \):
\[
\sum_{k=6}^{11} \binom{14}{k}(0.6)^k(0.4)^{14-k}
\]
\[
= \sum_{k=3}^{8} \binom{14}{k}(0.4)^k(0.6)^{14-k}
\]
\[
= 0.9417 - 0.0398 = 0.9019.
\]
The interval is \( (y_6 = 80.32, y_{12} = 80.53) \).

8.4–6 (a) We first find \( i \) and \( j \) so that \( P(Y_i < \pi_{0.25} < Y_j) \approx 0.95 \). Let the distribution of \( W \) be \( b(81, 0.25) \). Then
\[
P(Y_i < \pi_{0.25} < Y_j) = P(i \leq W \leq j - 1)
\]
\[
\approx P\left(\frac{i - 0.5 - 20.25}{\sqrt{15.1875}} \leq Z \leq \frac{j - 1 + 0.5 - 20.25}{\sqrt{15.1875}}\right).
\]
If we let
\[
\frac{i - 20.75}{\sqrt{15.1875}} = -1.96 \quad \text{and} \quad \frac{j - 20.75}{\sqrt{15.1875}} = 1.96
\]
we find that \( i \approx 13 \) and \( j \approx 28 \). Furthermore \( P(13 \leq W \leq 28 - 1) \approx 0.9453 \). Also note that the point estimate of \( \pi_{0.25} \),
\[
\bar{\pi}_{0.25} = (y_{20} + y_{21})/2
\]
falls near the center of this interval. So a 94.53\% confidence interval for \( \pi_{0.25} \) is \( (y_{13} = 21.0, y_{28} = 21.3) \).

(b) Let the distribution of \( W \) be \( b(81, 0.5) \). Then
\[
P(Y_i < \pi_{0.5} < Y_{82-i}) = P(i \leq W \leq 81 - i)
\]
\[
\approx P\left(\frac{i - 0.5 - 40.5}{\sqrt{20.25}} \leq Z \leq \frac{81 - i + 0.5 - 40.5}{\sqrt{20.25}}\right).
\]
If
\[
\frac{i - 41}{4.5} = -1.96,
\]
then \( i = 32.18 \) so let \( i = 32 \). Also
\[
\frac{81 - i - 40}{4.5} = 1.96
\]
implies that \( i = 32 \). Furthermore
\[
P(Y_{32} < \pi_{0.5} < Y_{50}) = P(32 \leq W \leq 49) \approx 0.9544.
\]
So an approximate 95.44\% confidence interval for \( \pi_{0.5} \) is \( (y_{32} = 21.4, y_{50} = 21.6) \).

(c) Similar to part (a), \( P(Y_{54} < \pi_{0.75} < Y_{69}) \approx 0.9453 \). Thus a 94.53\% confidence interval for \( \pi_{0.75} \) is \( (y_{54} = 21.6, y_{69} = 21.8) \).
8.4–8 A 95.86% confidence interval for \(m\) is \((y_6 = 14.60, y_{15} = 16.20)\).

8.4–10 (a) A point estimate for the medium is \(\bar{m} = (y_8 + y_9)/2 = (23.3 + 23.4)/2 = 23.35\).

(b) A 92.32% confidence interval for \(m\) is \((y_5 = 22.8, y_{12} = 23.7)\).

8.4–12 (a) Stems Leaves Frequency Depths

<table>
<thead>
<tr>
<th>Stems</th>
<th>Leaves</th>
<th>Frequency</th>
<th>Depths</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>80</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>74</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>20 51 73 73 92</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>01 31 32 52 57 58 71 74 84 92 95</td>
<td>11</td>
<td>18</td>
</tr>
<tr>
<td>7</td>
<td>08 22 36 42 46 57 70 80</td>
<td>8</td>
<td>26</td>
</tr>
<tr>
<td>8</td>
<td>03 11 49 51 57 71 82 92 93 93</td>
<td>10</td>
<td>(10)</td>
</tr>
<tr>
<td>9</td>
<td>33 40 61</td>
<td>3</td>
<td>24</td>
</tr>
<tr>
<td>10</td>
<td>07 09 10 30 31 40 58 75</td>
<td>8</td>
<td>21</td>
</tr>
<tr>
<td>11</td>
<td>16 38 41 43 51 55 66</td>
<td>7</td>
<td>13</td>
</tr>
<tr>
<td>12</td>
<td>10 22 78</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>13</td>
<td>34 44 50</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

(b) A point estimate for the median is \(\bar{m} = (y_{30} + y_{31})/2 = (8.51 + 8.57)/2 = 8.54\).

(c) Let the distribution of \(W\) be \(b(60, 0.5)\). Then
\[
P(Y_i < \pi_{0.5} < Y_{61-i}) = P(i \leq W \leq 60 - i) \\
\approx P \left( \frac{i - 0.5 - 30}{\sqrt{15}} \leq Z \leq \frac{60 - i + 0.5 - 30}{\sqrt{15}} \right).
\]

If
\[
\frac{i - 30.5}{\sqrt{15}} = -1.96
\]
then \(i \approx 23\). So
\[
P(Y_{23} < \pi_{0.5} < Y_{38}) = P(23 \leq W \leq 37) \approx 0.9472.
\]

So an approximate 94.72% confidence interval for \(\pi_{0.5}\) is
\((y_{23} = 7.46, y_{38} = 9.40)\).

(d) \(\pi_{0.40} = y_{24} + 0.4(y_{25} - y_{24}) = 7.57 + 0.4(7.70 - 7.57) = 7.622\).

(e) Let the distribution of \(W\) be \(b(60, 0.4)\) then
\[
P(Y_i < \pi_{0.40} < Y_j) = P(i \leq W \leq j - 1) \\
\approx P \left( \frac{i - 0.5 - 24}{\sqrt{14.4}} \leq Z \leq \frac{j - 1 + 0.5 - 24}{\sqrt{14.4}} \right).
\]

If we let \(\frac{i - 24.5}{\sqrt{14.4}} = -1.645\) and \(\frac{j - 24.5}{\sqrt{14.4}} = 1.645\) then \(i \approx 18\) and \(j \approx 31\). Also
\[
P(18 \leq W \leq 31 - 1) = 0.9133.\] So an approximate 91.33% confidence interval for \(\pi_{0.4}\) is \((y_{18} = 6.95, y_{31} = 8.57)\).

8.4–14 (a) \(P(Y_7 < \pi_{0.70}) = \sum_{k=7}^{8} \binom{8}{k}(0.7)^k(0.3)^{8-k} = 0.2553\);

(b) \(P(Y_5 < \pi_{0.70} < Y_8) = \sum_{k=5}^{7} \binom{8}{k}(0.7)^k(0.3)^{8-k} = 0.7483\).
8.5 The Wilcoxon Tests

8.5–2 In the following display, those observations that were negative are underlined.

| \( x \) | 1 2 2 2 2 3 4 4 4 5 6 6 6 |
| Ranks | 1 3.5 3.5 3.5 3.5 6 8 8 8 10 12 12 12 |

| \( x \) | 6 7 7 8 11 12 13 14 14 17 18 21 |
| Ranks | 12 14.5 14.5 16 17 18 19 20.5 20.5 22 23 24 |

The value of the Wilcoxon statistic is

\[
w = -1 - 3.5 - 3.5 - 3.5 + 3.5 - 6 - 8 - 8 - 8 - 10 - 12 + 12 + 12 + 14.5 + 14.5 + 16 + 17 + 18 + 19 - 20.5 + 20.5 + 22 + 23 + 24
\]

\[= 132.\]

For a one-sided alternative, the approximate \( p \)-value is, using the one-unit correction,

\[
P(W \geq 132) = P\left( \frac{W - 0}{\sqrt{24(25)(49)/6}} \geq \frac{131 - 0}{70} \right)
\]

\[\approx P(Z \geq 1.871) = 0.03064.\]

For a two-sided alternative, \( p \)-value = 2(0.03064) = 0.0613.

8.5–4 In the following display, those observations that were negative are underlined.

| \( x \) | 0.0790 0.5901 0.7757 1.0962 1.9415 |
| Ranks | 1 2 3 4 5 |

| \( x \) | 3.0678 3.8545 5.9848 9.3820 74.0216 |
| Ranks | 6 7 8 9 10 |

The value of the Wilcoxon statistic is

\[
w = -1 + 2 - 3 - 4 - 5 - 6 + 7 - 8 + 9 - 10 = -19.\]

Since

\[
|z| = \left| \frac{-19}{\sqrt{10(11)(21)/6}} \right| = 0.968 < 1.96,
\]

we do not reject \( H_0 \).

8.5–6 (a) The critical region is given by

\[
w \geq 1.645\sqrt{15(16)(31)/6} = 57.9.
\]

(b) In the following display, those differences that were negative are underlined.

| \( x_i - 50 \) | 2 2 2.5 3 4 4 4.5 6 7 |
| Ranks | 1.5 1.5 3 4 5.5 5.5 7 8 9 |

| \( x_i - 50 \) | 7.5 8 8 14.5 15.5 21 |
| Ranks | 10 11.5 11.5 13 14 15 |

The value of the Wilcoxon statistic is
\[ w = 1.5 - 1.5 + 3 + 4 + 5.5 - 5.5 - 7 - 8 + 9 + 10 + 11.5 + 11.5 - 13 + 14 + 15 = 50. \]

Since
\[ z = \frac{50}{\sqrt{15(16)(31)/6}} = 1.420 < 1.645, \]
or since \( w = 50 < 57.9 \), we do not reject \( H_0 \).

(c) The approximate \( p \)-value is, using the one-unit correction,
\[
p\text{-value} = P(W \geq 50) \\
\approx P\left( Z \geq \frac{49}{\sqrt{15(16)(31)/6}} \right) = P(Z \geq 1.3915) = 0.0820.
\]

8.5–8 The 24 ordered observations, with the \( x \)-values underlined and the ranks given under each observation are:

<table>
<thead>
<tr>
<th>( x )-values</th>
<th>Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.7794, 0.7546, 0.7565, 0.7613</td>
<td>1, 2, 3, 4</td>
</tr>
<tr>
<td>0.7615, 0.7701</td>
<td>5, 6</td>
</tr>
<tr>
<td>0.7712, 0.7719, 0.7719, 0.7720</td>
<td>7, 8.5</td>
</tr>
<tr>
<td>0.7720, 0.7731</td>
<td>9, 10.5</td>
</tr>
<tr>
<td>0.7741, 0.7750</td>
<td>11, 14.5</td>
</tr>
<tr>
<td>0.7750, 0.7776, 0.7795</td>
<td>12, 16</td>
</tr>
<tr>
<td>0.7811</td>
<td>17</td>
</tr>
<tr>
<td>0.7816, 0.7851, 0.7870, 0.7876, 0.7972</td>
<td>18, 19, 20</td>
</tr>
<tr>
<td>0.7815</td>
<td>21</td>
</tr>
<tr>
<td>0.7816</td>
<td>22</td>
</tr>
<tr>
<td>0.7851</td>
<td>23</td>
</tr>
<tr>
<td>0.7870</td>
<td>24</td>
</tr>
</tbody>
</table>

(a) The value of the Wilcoxon statistic is
\[ w = 4 + 10.5 + 12 + 14.5 + 17 + 18 + 19 + 20 + 21 + 22 + 23 + 24 = 205. \]

Thus
\[
p\text{-value} = P(W \geq 205) \approx P\left( Z \geq \frac{204.5 - 150}{\sqrt{12(12)(25)/12}} \right) = P(Z \geq 3.15) < 0.001
\]
so that we clearly reject \( H_0 \).
8.5–8 The ordered combined sample with the x observations underlined are:

\[
\begin{align*}
67.4 & \quad 69.3 & \quad 72.7 & \quad 73.1 & \quad 75.9 & \quad 77.2 & \quad 77.6 & \quad 78.9 \\
\text{Ranks:} & \quad 1 & \quad 2 & \quad 3 & \quad 4 & \quad 5 & \quad 6 & \quad 7 & \quad 8 \\
82.5 & \quad 83.2 & \quad 83.3 & \quad 84.0 & \quad 84.7 & \quad 86.5 & \quad 87.5 \\
\text{Ranks:} & \quad 9 & \quad 10 & \quad 11 & \quad 12 & \quad 13 & \quad 14 & \quad 15 \\
87.6 & \quad 88.3 & \quad 88.6 & \quad 90.2 & \quad 90.4 & \quad 90.4 & \quad 92.7 & \quad 94.4 & \quad 95.0 \\
\text{Ranks:} & \quad 16 & \quad 17 & \quad 18 & \quad 19 & \quad 20.5 & \quad 20.5 & \quad 22 & \quad 23 & \quad 24 \\
\end{align*}
\]

The value of the Wilcoxon statistic is

\[
w = 4 + 8 + 9 + \cdots + 23 + 24 = 187.5.
\]

Since

\[
z = \frac{187.5 - 12(25)/2}{\sqrt{12(12)(25)/12}} = 2.165 > 1.645,
\]

we reject \( H_0 \).

8.5–12 The ordered combined sample with the 48-passenger bus values underlined are:

\[
\begin{align*}
104 & \quad 184 & \quad 196 & \quad 197 & \quad 248 & \quad 253 & \quad 260 & \quad 279 \\
\text{Ranks:} & \quad 1 & \quad 2 & \quad 3 & \quad 4 & \quad 5 & \quad 6 & \quad 7 & \quad 8 \\
300 & \quad 308 & \quad 323 & \quad 331 & \quad 355 & \quad 386 & \quad 393 & \quad 396 \\
\text{Ranks:} & \quad 9 & \quad 10 & \quad 11 & \quad 12 & \quad 13 & \quad 14 & \quad 15 & \quad 16 \\
414 & \quad 432 & \quad 450 & \quad 452 \\
\text{Ranks:} & \quad 17 & \quad 18 & \quad 19 & \quad 20 \\
\end{align*}
\]

The value of the Wilcoxon statistic is

\[
w = 2 + 3 + 4 + 5 + 7 + 8 + 13 + 14 + 15 + 18 + 19 = 108.
\]
Since
\[ z = \frac{108 - 11(21)/2}{\sqrt{9(11)(21)/12}} = -0.570 > -1.645, \]
we do not reject \( H_0 \).

**8.5–14 (a)** Here is the two-sided stem-and-leaf display.

<table>
<thead>
<tr>
<th>Group A leaves</th>
<th>Stems</th>
<th>Group B leaves</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1 2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1 5 7</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3 1</td>
<td></td>
</tr>
<tr>
<td>6 2</td>
<td>4 4</td>
<td></td>
</tr>
<tr>
<td>7 5 1 0</td>
<td>5 3</td>
<td></td>
</tr>
<tr>
<td>3 1</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

**8.5–16 (a)** Here is the two-sided stem-and-leaf display.

<table>
<thead>
<tr>
<th>Young Subjects</th>
<th>Stems</th>
<th>Older Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>3*</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4*</td>
<td></td>
</tr>
<tr>
<td>9 8 8 6 5</td>
<td>4*</td>
<td>6</td>
</tr>
<tr>
<td>0</td>
<td>5*</td>
<td>3 4</td>
</tr>
<tr>
<td>8 8 7 7 6 6 6 6</td>
<td>5*</td>
<td>7 8 9 9</td>
</tr>
<tr>
<td>6*</td>
<td>2 2</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>6*</td>
<td>5 7</td>
</tr>
<tr>
<td>7*</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>7*</td>
<td>1 3</td>
<td></td>
</tr>
<tr>
<td>8*</td>
<td>6 8</td>
<td></td>
</tr>
<tr>
<td>9*</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
(b) The value of the Wilcoxon statistic, the sum of the ranks for the younger subjects, is \( w = 198 \). Since
\[
z = \frac{198 - 297.5}{29.033} = -3.427,
\]
we clearly reject \( H_0 \).

(c) The \( t \)-test leads to the same conclusion.

### 8.5–18

(a) Using the Wilcoxon statistic, the sum of the ranks for the normal air is 102. Since
\[
z = \frac{102 - 126}{\sqrt{168}} = -1.85,
\]
we reject the null hypothesis. The \( p \)-value is approximately 0.03.

(b) Using a \( t \)-statistic, we failed to reject the null hypothesis at an \( \alpha = 0.05 \) significance level.

(c) For these data, the results are a little different with the Wilcoxon statistic leading to rejection of the null hypothesis while the \( t \)-test did not reject \( H_0 \).

### 8.6 Run Test and Test for Randomness

#### 8.6–2
The combined ordered sample is:
\[
\begin{array}{ccccccc}
13.00 & 15.50 & 16.75 & 17.25 & 17.50 & 19.00 \\
y & x & x & x & y & y \\
\hline
19.25 & 19.75 & 20.50 & 20.75 & 21.50 \\
x & y & x & x & y \\
\hline
22.00 & 22.50 & 22.75 & 23.50 & 24.75 \\
x & x & y & y & y \\
\end{array}
\]
For these data, \( r = 9 \). Also,
\[
E(R) = \frac{2(8)(8)}{8 + 8} + 1 = 9
\]
so we clearly accept \( H_0 \).

#### 8.6–4
\[
\begin{array}{cccccccccccccccc}
x & x & x & x & x & x & x & x & x & x & x & x, \\
x & x & x & x & x & x & x & x & x & x & x & x, \\
x & x & x & x & x & x & x & x & x & x & x & x, \\
x & x & x & x & x & x & x & x & x & x & x & x, \\
x & x & x & x & x & x & x & x & x & x & x & x, \\
x & x & x & x & x & x & x & x & x & x & x & x.
\end{array}
\]

#### 8.6–6
The combined ordered sample is:
For these data, the number of runs is \( r = 11 \). The \( p \)-value of this test is

\[
p\text{-value} = P(R \leq 11) \approx P \left( Z \leq \frac{11.5 - 16.0}{\sqrt{15(14)/29}} \right) = 0.0473.
\]

Thus we would reject \( H_0 \) at an \( \alpha = 0.0473 \approx 0.05 \) significance level.

8.6–8 The median is 22.45. Replacing observations below the median with \( L \) and above the median with \( U \), we have

\[
L \ U \ L \ U \ L \ U \ L \ U \ U \ U \ L \ L \ L \ U \ L \ U \ L \ U \ L \ U \ U \ U
\]

or \( r = 12 \) runs. Since

\[
P(R \geq 12) = (2 + 14 + 98 + 294 + 882)/12,870 = 1290/12,870 = 0.10
\]

and

\[
P(R \geq 13) = 408/12,870 = 0.0371,
\]

we would reject the hypothesis of randomness if \( \alpha = 0.10 \) but would not reject if \( \alpha = 0.0317 \).

8.6–10 For these data, the median is 21.55. Replacing lower and upper values with \( L \) and \( U \), respectively, gives the following displays:

\[
L \ U \ L \ L \ U \ U \ U \ U \ L \ U \ L \ U \ L \ L \ U \ U \ U \ U \ U \ U \ U \ L \ U \ U \ U \ U \ L \ U \ L \ U \ L \ U \ L \ L \ U \ L \ L \ L
\]

We see that there are \( r = 23 \) runs. The value of the standard normal test statistic is

\[
z = \frac{23 - 20}{\sqrt{(19)(18)/37}} = 0.987.
\]

Thus we would not reject the hypothesis of randomness at any reasonable significance level.
8.6–12 (a) The number of runs is \( r = 38 \). The \( p \)-value of the test is

\[
p\text{-value} = P(R \geq 38) \approx P\left(Z \geq \frac{37.5 - 28.964}{\sqrt{27.964(26.964)/54.928}}\right) = P(Z \geq 2.30) = 0.0107,
\]

so we would not reject the hypothesis of randomness in favor of a cyclic effect at \( \alpha = 0.01 \), but the evidence is strong that the latter might exist. This, however, is not bad.

(b) The different versions of the test were not written in such a way that allowed students to finish earlier on one than on the other.

8.6–14 The number of runs is \( r = 30 \). The \( p \)-value of the test is

\[
p\text{-value} = P(R \geq 30) \approx P\left(Z \geq \frac{29.5 - 35.886}{\sqrt{34.886(33.886)/69.772}}\right) = P(Z \geq 1.55) = 0.9394,
\]

so we would not reject the hypothesis of randomness, although there seems to be a tendency of too few runs. A display of the data shows that there is a cyclic effect with long cycles.

8.6–16 The number of runs is \( r = 10 \). The mean and variance for the run test are

\[
\mu = \frac{2(17)(17)}{17 + 17} + 1 = 18;
\]

\[
\sigma^2 = \frac{(18 - 1)(18 - 2)}{17 + 17 - 1} = \frac{272}{33}.
\]

The standard deviation is \( \sigma = 2.87 \). The \( p \)-value for this test is

\[
P(R \leq 10) = P\left(\frac{R - 18}{2.87} \leq \frac{10.5 - 18}{2.87}\right) \approx P(Z \leq -2.61) = -0.0045.
\]

Thus we reject \( H_0 \). The \( p \)-value is larger than that for the Wilcoxon test but still clearly leads to reject of the null hypothesis.

8.6–18 The number of runs is \( r = 11 \) and the mean number of runs is \( \mu = 10.6 \). Thus the run test would not detect any difference.
8.7 Kolmogorov-Smirnov Goodness of Fit Test

8.7-4 (a)

Figure 8.7-4: $H_0$: $X$ has a Cauchy distribution

(b) $d_{10} = 0.3100$ at $x = -0.7757$. Since $0.31 < 0.37$, we do not reject the hypothesis that these are observations of a Cauchy random variable.

8.7-6

Figure 8.7-6: A 90% confidence band for $F(x)$
8.7–8 The value of the Kolmogorov-Smirnov statistic is 0.0587 which occurs at \( x = 21 \). We clearly accept the null hypothesis.

![Figure 8.7–8: \( H_0 \): \( X \) has an exponential distribution](image)

8.7–10 \( d_{62} = 0.068 \) at \( x = 4 \) so we accept the hypothesis that \( X \) has a Poisson distribution.

8.7–12

![Figure 8.7–12: \( H_0 \): \( X \) is \( N(15.3, 0.6^2) \)](image)

\( d_{16} = 0.1835 \) at \( x = 15.6 \) so we do not reject the hypothesis that the distribution of peanut weights is \( N(15.3, 0.6^2) \).
8.8 Resampling

8.8-2 (a) > read 'C:\Tanis-Hogg\Maple Examples\stat.m':
   with(plots):
   read 'C:\Tanis-Hogg\Maple Examples\HistogramFill.txt':
   read 'C:\Tanis-Hogg\Maple Examples\ScatPlotCirc.txt':
   read 'C:\Tanis-Hogg\Maple Examples\Chapter_05.txt':
   XX := Exercise_5_4_2;


   > Probs := [seq(1/16, k = 1 .. 16)]:
   XXPDF := zip((XX, Probs) -> (XX, Probs), XX, Probs):
   > for k from 1 to 200 do
     X := DiscreteS(XXPDF, 16):
     Svar[k] := Variance(X):
     od:
   > Svars := [seq(Svar[k], k = 1 .. 200)]:
   > Mean(Svars);

   1.972629584

   > xtics := [seq(0.4*k, k = 1 .. 12)]:
   ytics := [seq(0.05*k, k = 1 .. 11)]:
   P1 := plot([[0,0],[0,0]], x=0..4.45, y=0..0.57, xtickmarks=xtics, ytickmarks=ytics, labels=['','','']):
   P2 := HistogramFill(Svars,0..4.4,11):
   display({P1, P2});

   The histogram is shown in Figure 5.4-2(ab).

   (b) > theta := Mean(XX) - 9;
   for k from 1 to 200 do
     Y := ExponentialS(theta,21):
     Svary[k] := Variance(Y):
     od:
   > Svarys := [seq(Svary[k], k = 1 .. 200)]:

   > Mean(Svarys);

   1.747515570

   > xtics := [seq(0.4*k, k = 1 .. 14)]:
   ytics := [seq(0.05*k, k = 1 .. 15)]:
   P3 := plot([[0,0],[0,0]], x=0..5.65, y=0..0.67, xtickmarks=xtics, ytickmarks=ytics, labels=['','','']):
   P4 := HistogramFill(Svarys,0..5.6,14):
   display({P3, P4});

   > Svars := sort(Svars):
   Svarys := sort(Svarys):
   > xtics := [seq(k*0.5, k = 1 .. 18)]:
   ytics := [seq(k*0.5, k = 1 .. 18)]:
   P5 := plot([[0,0],[5.5,5.5]], x=0..5.4, y=0..7.4, color=black,
Note that the variance of the sample variances from the exponential distribution is greater than the variance of the sample variances from the resampling distribution.
Nonparametric Methods

[4.400, 91], [3.983, 82], [1.767, 58], [4.317, 97], [1.917, 59],
[4.583, 90], [1.833, 58], [4.767, 98], [1.917, 55], [4.317, 97],
[1.750, 61], [4.583, 82], [3.767, 91], [2.000, 60], [4.650, 84], [1.817, 63],
[4.917, 91], [4.000, 83], [4.317, 84], [2.133, 71], [4.783, 83],
[4.217, 70], [4.733, 81], [2.000, 60], [4.717, 91], [1.917, 51],
[4.233, 85], [1.567, 55], [4.583, 98], [2.133, 49], [4.500, 85],
[1.717, 65], [4.783, 102], [1.850, 56], [4.583, 86], [1.733, 62]]:

> r := Correlation(Pairs);

\[ r := 0.9087434803 \]

> xtics := [seq(1.4 + 0.1*k, k = 0 .. 37)];
ytics := [seq(48 + 2*k, k = 0 .. 31)];
P1 := plot([[1.35, 47], [1.35, 47]], x = 1.35 .. 5.15, y = 47 .. 109,
xtickmarks = xtics, ytickmarks = ytics, labels = ['''', '''']):
P2 := ScatPlotCirc(Pairs):
display({P1, P2});

Figure 8.8-4: (a) Scatterplot of the 50 Pairs of Old Faithful Data

(b) > Probs := [seq(1/54, k = 1 .. 54)]:
    EmpDist := zip((Pairs, Probs) -> (Pairs, Probs), Pairs, Probs):
> for k from 1 to 500 do
    Samp := DiscreteS(EmpDist, 54);
    RR[k] := Correlation(Samp):
    od:
R := [seq(RR[k], k = 1 .. 500)];
rbar := Mean(R);

\[ rbar := 0.9079354926 \]

(c) > xtics := [seq(0.8 + 0.01*k, k = 0 .. 20)];
ytics := [seq(k, k = 1 .. 25)];
> P3 := plot([[0.79, 0], [0.79, 0]], x = 0.79 .. 1.005,
y = 0 .. 23.5, xtickmarks = xtics, ytickmarks = ytics, labels = ['''', '''']):
P4 := HistogramFill(R, 0.8 .. 1, 20):
display({P3, P4});
The histogram is plotted in Figure 5.4-4 **(d)**.

**(d)** Now simulate a random sample of 500 correlation coefficients, each calculated from a sample of size 54 from a bivariate normal distribution with correlation coefficient $r = 0.9087434803$.

```plaintext
> for k from 1 to 500 do
    Samp := BivariateNormalS(0,1,0,1,r,54):
    RR[k] := Correlation(Samp):
    od:
RRBivNorm := seq(RR[k], k = 1 .. 500):
AverageR := Mean(RRBivNorm):

AverageR := .9073168034
```

```plaintext
> P5 := plot([[0.79, 0],[0.79,0]], x = 0.79 .. 1.005,
y = 0 .. 18.5, xtickmarks=xtics, ytickmarks=ytics, labels=[‘’,’’]):
P6 := HistogramFill(RRBivNorm, 0.8 .. 1, 20):
display({P5, P6});
```

![Histograms](image)

**Figure 8.8-4: ****(ce)** Histograms of $R_s$: From Resampling on Left, From Bivariate Normal on Right
Nonparametric Methods

(f) > R := sort(R):
RBivNorm := sort(RBivNorm):
xtics := [seq(0.8 + 0.01*k, k = 0 .. 20)]:
ytics := [seq(0.8 + 0.01*k, k = 0 .. 20)]:
P7 := plot([[0.8, 0.8], [1, 1]], x = 0.8 .. 0.97, y = 0.8 .. 0.97,
color=black, thickness=2, labels=[``,''], xtickmarks=xtics,
ytickmarks=ytics):
P8 := ScatPlotCirc(R, RBivNorm):
display({P7, P8});

Figure 8.8-4: q-q Plot of the Values of $R$ from Bivariate Normal Versus from Resampling

> StDev(R); StDev(RBivNorm);

.01852854051
.02461716901

The means are about equal but the standard deviation of the values of $R$ from the bivariate normal distribution is larger than that of the resampling distribution.

8.8-6 (a) > with(plots):
> read `C:\Tanis-Hogg\Maple Examples\stat.m`;
> read `C:\Tanis-Hogg\Maple Examples\ScatPlotPoint.txt`;
> read `C:\Tanis-Hogg\Maple Examples\EmpCDF.txt`;
> read `C:\Tanis-Hogg\Maple Examples\HistogramFill.txt`;
> read `C:\Tanis-Hogg\Maple Examples\ScatPlotCirc.txt`;
> read `C:\Tanis-Hogg\Maple Examples\Chapter_05.txt`;
Pairs := Exercise_5_4_6;
Pairs := [[5.4341, 8.4902], [33.2097, 4.7063], [0.4034, 1.8961],
[1.4137, 0.2996], [17.9365, 3.1350], [4.4867, 6.2089],
[11.5107, 10.9784], [8.2473, 19.6554], [1.9995, 3.6339],
[1.8965, 1.7850], [1.7116, 1.1545], [4.4594, 1.2344],
[0.4036, 0.7260], [3.0578, 19.0489], [21.4049, 4.6495],
[3.8845, 13.7945], [5.9536, 9.2438], [11.3942, 1.7863],
[5.4813, 4.3356], [7.0590, 1.15834]]
> r := Correlation(Pairs);
r := .02267020144
> xtics := [seq(k, k = 0 .. 35)]:
> ytics := [seq(k, k = 0 .. 35)]:
> P1 := plot([[0,0],[0,0]], x = 0 .. 35.5, y = 0 .. 35.5,
xtickmarks = xtics, ytickmarks = ytics, labels = ['','','']):
P2 := ScatterPlotCirc(Pairs):
display({P1, P2});

![Scatterplot](image)

Figure 8.8-6: (a) Scatterplot of Paired Data from Two Independent Exponential Distributions

(b) > Probs := [seq(1/20, k = 1 .. 20)]:
    EmpDist := zip((Pairs, Probs) -> (Pairs, Probs), Pairs, Probs):
> for k from 1 to 500 do
    Samp := DiscreteS(EmpDist, 20);
    RR[k] := Correlation(Samp):
    od:
R := [seq(RR[k], k = 1 .. 500)]:
rbar := Mean(R);

\[
rbar \approx 0.04691961690
\]

> Min(R), Max(R);
-0.224435806, 0.6607518008

> xtics := [seq(-0.5 + 0.1*k, k = 0 .. 12)]:
ytics := [seq(k/2, k = 1 .. 6)]:
> P3 := plot([[0, 0],[0,0]], x = -0.5 .. 0.7, y = 0 .. 2.8,
xtickmarks = xtics, ytickmarks = ytics, labels = ['','','']):
P4 := HistogramFill(R, -0.5 .. 0.7, 12):
display({P3, P4});
The histogram is given in Figure 5.4-6 (ce).

(c) How do these observations compare with a random sample of 500 correlation coefficients, each calculated from a sample of size 20 from a bivariate normal distribution with correlation coefficient \( r = 0.02267020145? \)

> for k from 1 to 500 do
    Samp := BivariateNormalS(0,1,0,1,r,20):
    RR[k] := Correlation(Samp):
    od:
Nonparametric Methods

\[
\text{RBivNorm} := [\text{seq}(\text{RR}[k], k = 1 \ldots 500)];
\]
\[
\text{AverageR} := \text{Mean}(\text{RBivNorm});
\]
\[
\text{Min}(\text{RBivNorm}), \text{Max}(\text{RBivNorm});
\]
\[
AverageR := .02508989176
\]
\[-.6012477460, .6131980318\]

\[
> \text{xtics} := [\text{seq}(-0.7 + 0.1*k, k = 0 \ldots 14)];
\]
\[
\text{ytics} := [\text{seq}(k/2, k = 1 \ldots 6)];
\]
\[
> \text{P5} := \text{plot}([[0, 0],[0,0]], x = -0.7 .. 0.7, y = 0 .. 1.8, 
\]
\[
\text{xtickmarks=xtics, ytickmarks=ytics, labels='',''}]:
\]
\[
\text{P6} := \text{HistogramFill}(\text{RBivNorm}, -0.7 .. 0.7, 14):
\]
\[
\text{display}([\text{P5}, \text{P6}]);
\]

Figure 8.8-6: (ce) Histograms of Rs: From Resampling on Left, From Bivariate Normal on Right

\[
\text{(e)} > \text{R} := \text{sort}(\text{R});
\]
\[
\text{RBivNorm} := \text{sort}(\text{RBivNorm});
\]
\[
> \text{xtics} := [\text{seq}(-0.7 + 0.1*k, k = 0 \ldots 14)];
\]
\[
\text{ytics} := [\text{seq}(-0.7 + 0.1*k, k = 0 \ldots 14)];
\]
\[
> \text{P7} := \text{plot}([[0.7, 0.7],[0.7,0.7]], x = -0.7 .. 0.7, y = -0.7 .. 0.7, 
\]
\[
\text{color=black, thickness=2, labels='',''}], \text{xtickmarks=xtics, ytickmarks=ytics}):
\]
\[
\text{P8} := \text{ScatPlotCirc}(\text{R}, \text{RBivNorm}):
\]
\[
\text{display}([\text{P7}, \text{P8}]);
\]

\[
> \text{Mean}(\text{R});
\]
\[
\text{Mean}(\text{RBivNorm});
\]
\[
.04691961692
\]
\[
.02508989164
\]

\[
> \text{StDev}(\text{R});
\]
\[
\text{StDev}(\text{RBivNorm});
\]
\[
.1527482117
\]
\[
.2200346799
\]
Figure 8.8-6: (f) q-q Plot of the Values of R from Bivariate Normal Versus from Resampling

The sample mean of the observations of $R$ from the bivariate normal distribution is less than that from the resampling distribution and the standard deviation of the values of $R$ from the bivariate normal distribution is greater than that of the resampling distribution.
Chapter 9

Bayesian Methods

9.1 Subjective Probability

9.1–2 No answer needed.

9.1–4 One solution is 1 to 7 for a bet on $A$ and 5 to 1 for a bet on $B$.

$A$ bets: for a 7 dollar bet, the bookie gives one back: $30000/7 \times 1 = 4285.71$. So the bookie gives out $4285.71 + 30000 = 34285.71$.

$B$ bets: for a 1 dollar bet, the bookie gives five back: $5000/1 \times 5 = 25000$. So the bookie gives out $25000 + 5000 = 30000$.

9.1–6 Following HINT: before anything, the person has

$$ p_1 + \frac{d}{4} + p_2 + \frac{d}{4} - \left( p_3 - \frac{d}{4} \right) = p_1 + p_2 + \frac{3d}{4} - p_3 = -d + \frac{3d}{4} = -\frac{d}{4}; $$

that is, the person is down $d/4$ before the start.

1. If $A_1$ occurs, both win and they exchange units.
2. If $A_2$ happens, again they exchange units.
3. If neither $A_1$ nor $A_2$ occurs, both receive zero; and the person is still down $d/4$ in all three cases.

Thus it is bad for that person to believe that $p_3 > p_1 + p_2$ for it can lead to a Dutch book.

9.1–8 $P(A \cup A') = P(A) + P(A')$ from Theorem 7.1–1. From Exercise 7.1–7, $P(S) = 1$ so that $1 = P(A) + P(A')$. Thus $P(A') = 1 - P(A)$.
9.2 Bayesian Estimation

9.2–2 (a) \[ g(\tau \mid x_1, x_2, \ldots, x_n) \propto \frac{(x_1x_2 \cdots x_n)^{\alpha - 1} \tau^{n \alpha - \alpha_0} - 1 - \tau^{\theta_0}e^{-\tau x_i/(1/\tau)}}{[\Gamma(\alpha)]^n \Gamma(\alpha_0)^{\theta_0}} \]

\[ \propto \tau^{\alpha n + \alpha_0 - 1}e^{-(1/\theta_0 + \Sigma x_i)\tau} \]

which is \( \Gamma\left(n \alpha + \alpha_0, \frac{\theta_0}{1 + \theta_0 \Sigma x_i}\right) \).

(b) \[ E(\tau \mid x_1, x_2, \ldots, x_n) = (n \alpha + \alpha_0) \frac{\theta_0}{1 + \theta_0 \Sigma x_n} \]

\[ = \frac{\alpha_0 \theta_0}{1 + \theta_0 \Sigma x_n} + \frac{\alpha n \theta_0}{1 + n \theta_0 \Sigma x_n} \]

\[ = \frac{n \alpha + \alpha_0}{n \theta_0 + \Sigma x_n}. \]

(c) The posterior distribution is \( \Gamma(30 + 1, 1/[1/2 + 10 \pi]) \). Select \( a \) and \( b \) so that \( P(a < \tau < b) = 0.95 \) with equal tail probabilities. Then

\[ \int_a^b \frac{(1/2 + 10 \pi)^40}{\Gamma(40)} w^{40-1}e^{-w(1/2 + 10 \pi)}dw = \int_{a(1/2 + 10 \pi)}^{b(1/2 + 10 \pi)} \frac{1}{\Gamma(40)} z^{39}e^{-z}dz, \]

making the change of variables \( w(1/2 + 10 \pi) = z \). Let \( v_{0.025} \) and \( v_{0.975} \) be the quantiles for the \( \Gamma(40,1) \) distribution. Then

\[ a = \frac{v_{0.025}}{1/2 + 10 \pi}; \]

\[ b = \frac{v_{0.975}}{1/2 + 10 \pi}. \]

It follows that

\[ P(a < \tau < b) = 0.95. \]

9.2–4

\[ (3\theta)^n(x_1x_2 \cdots x_n)^2e^{-\theta \Sigma x_i^3} \cdot \theta^4 - 1 - 4\theta \propto \theta^n + 3e^{-(4 + \Sigma x_i^3)\theta} \]

which is \( \Gamma\left(n + 4, \frac{1}{4 + \Sigma x_i^3}\right) \). Thus

\[ E(\theta \mid x_1, x_2, \ldots, x_n) = \frac{n + 4}{4 + \Sigma x_i^3}. \]
9.3 More Bayesian Concepts

7.3–2 \( k(x, \theta) = \binom{n}{x} \theta^x (1 - \theta)^{n-x} \cdot \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha) \Gamma(\beta)} \theta^{\alpha-1} (1 - \theta)^{\beta-1}, \quad x = 0, 1, \ldots, n, \quad 0 < \theta < 1. \)

\[
k_1(x) = \int_0^1 \binom{n}{x} \theta^x (1 - \theta)^{n-x} \cdot \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha) \Gamma(\beta)} \theta^{\alpha-1} (1 - \theta)^{\beta-1} d\theta
\]

\[
= \frac{n! \Gamma(\alpha + \beta) \Gamma(x + \alpha) \Gamma(n - x + \beta)}{\Gamma(\alpha) \Gamma(\beta) \Gamma(n + \alpha + \beta)}, \quad x = 0, 1, 2, \ldots, n.
\]

7.3–4 \( k(x, \theta) = \int_0^{\infty} \tau x^\tau - 1 e^{-\theta x^\tau} \cdot \frac{1}{\Gamma(\alpha) \beta^\alpha} \theta^\alpha - 1 e^{-\theta/\beta} d\theta, \quad x > 0, \theta > 0 \)

\[
= \frac{\tau x^{\tau - 1}}{\Gamma(\alpha) \beta^\alpha} \int_0^{\infty} \theta^\alpha + 1 - 1 e^{-(\tau^\tau + 1/\beta)\theta} d\theta
\]

\[
= \frac{\tau x^{\tau - 1}}{\Gamma(\alpha) \beta^\alpha (\tau^\tau + 1/\beta)^{\alpha+1}}, \quad 0 < x < \infty
\]

\[
= \frac{\alpha \beta \tau x^{\tau - 1}}{(\beta x^\tau + 1)^{\alpha+1}}, \quad 0 < x < \infty.
\]

7.3–6 \( g(\theta_1, \theta_2 | x_1 = 3, x_2 = 7) \propto \left( \frac{1}{\pi} \right)^2 \frac{\theta_2^2}{[\theta_2^2 + (3 - \theta_1)^2][\theta_2^2 + (7 - \theta_1)^2]}. \)

The figures show the graph of

\[
h(\theta_1, \theta_2) = \frac{\theta_2^2}{[\theta_2^2 + (3 - \theta_1)^2][\theta_2^2 + (7 - \theta_1)^2]}.
\]

The second figure shows a contour plot.

![Graphs to help to see where \( \theta_1 \) and \( \theta_2 \) maximize the posterior p.d.f.](image)

Using Maple, a solution is \( \theta_1 = 5 \) and \( \theta_2 = 2 \). Other solutions satisfy

\[
\theta_2 = \sqrt{-\theta_1^2 + 10\theta_1 - 21}.
\]
Chapter 10

Some Theory

10.1 Sufficient Statistics

10.1–2 The distribution of \( Y \) is Poisson with mean \( n\lambda \). Thus, since \( y = \Sigma x_i \),

\[
P(X_1 = x_1, X_2 = x_2, \ldots, X_n = x_n | Y = y) = \frac{(\lambda \Sigma x_i e^{-n\lambda})/(x_1! x_2! \cdots x_n!)}{(n\lambda)^y e^{-n\lambda}/y!} = \frac{y!}{x_1! x_2! \cdots x_n! n^y},
\]

which does not depend on \( \lambda \).

10.1–4 (a) \( f(x; \theta) = e^{(\theta-1)\ln x + \ln \theta} \), \( 0 < x < 1 \), \( 0 < \theta < \infty \);

so \( K(x) = \ln x \) and thus

\[
Y = \sum_{i=1}^{n} \ln X_i = \ln(X_1 X_2 \cdots X_n)
\]

is a sufficient statistic for \( \theta \).

(b) \( L(\theta) = \theta^n (x_1 x_2 \cdots x_n)^{\theta-1} \)

\[
\ln L(\theta) = n \ln \theta + (\theta - 1) \ln (x_1 x_2 \cdots x_n)
\]

\[
\frac{d\ln L(\theta)}{d\theta} = \frac{n}{\theta} + \ln (x_1 x_2 \cdots x_n) = 0.
\]

Hence

\[
\hat{\theta} = -n/\ln (X_1 X_2 \cdots X_n),
\]

which is a function of \( Y \).

(c) Since \( \hat{\theta} \) is a single valued function of \( Y \) with a single valued inverse, knowing the value of \( \hat{\theta} \) is equivalent to knowing the value of \( Y \), and hence it is sufficient.

10.1–6 (a) \( f(x_1, x_2, \ldots, x_n) = \frac{(x_1 x_2 \cdots x_n)^{\alpha-1} e^{-\Sigma x_i/\theta}}{[\Gamma(\alpha)]^{n \theta^{\alpha n}}} \)

\[
= \left( \frac{e^{-\Sigma x_i/\theta}}{\theta^{\alpha n}} \right) \left( \frac{(x_1 x_2 \cdots x_n)^{\alpha-1}}{[\Gamma(\alpha)]^{n}} \right).
\]

The second factor is free of \( \theta \). The first factor is a function of the \( x_i \)'s through \( \sum_{i=1}^{n} x_i \) only, so \( \sum_{i=1}^{n} x_i \) is a sufficient statistic for \( \theta \).
\((b) \quad \ln L(\theta) = \ln(x_1 x_2 \cdots x_n)^{\alpha - 1} - \sum_{i=1}^{n} x_i / \theta - \ln[\Gamma(\alpha)] n - \alpha n \ln \theta\)

\[
\frac{d \ln L(\theta)}{d\theta} = \sum_{i=1}^{n} x_i / \theta^2 - \alpha n / \theta = 0 \\
\alpha n \theta = \sum_{i=1}^{n} x_i \\
\hat{\theta} = \frac{1}{\alpha n} \sum_{i=1}^{n} X_i.
\]

\(Y = \sum_{i=1}^{n} X_i\) has a gamma distribution with parameters \(\alpha n\) and \(\theta\). Hence

\[E(\hat{\theta}) = \frac{1}{\alpha n} (\alpha n \theta) = \theta.\]

10.1–8

\[E(e^{tZ}) = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \left(\frac{1}{\sqrt{2\pi} \theta}\right)^{n} e^{-\frac{\sum y_i^2}{2\theta}} \cdot e^{t\sum \alpha_i x_i / \sum x_i} dx_1 dx_2 \cdots dx_n.\]

Let \(x_i / \sqrt{\theta} = y_i, i = 1, 2, \ldots, n\). The Jacobian is \((\sqrt{\theta})^n\). Hence

\[E(e^{tZ}) = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} (\sqrt{\theta})^n \left(\frac{1}{\sqrt{2\pi} \theta}\right)^{n} e^{-\frac{\sum y_i^2}{2\theta}} \cdot e^{t\sum \alpha_i y_i / \sum y_i} dy_1 dy_2 \cdots dy_n \]

which is free of \(\theta\). Since the distribution of \(Z\) is free of \(\theta\), \(Z\) and \(Y = \sum_{i=1}^{n} X_i^2\), the sufficient statistics, are independent.

10.2 Power of a Statistical Test

10.2–2 (a) \(K(\mu) = P(\overline{X} \leq 354.05; \mu)\)

\[= P\left(Z \leq \frac{354.05 - \mu}{2/\sqrt{12}}; \mu\right) \]

\[= \Phi\left(\frac{354.05 - \mu}{2/\sqrt{12}}\right);\]

(b) \(\alpha = K(355) = \Phi\left(\frac{354.05 - 355}{2/\sqrt{12}}\right) = \Phi(-1.645) = 0.05;\)

(c) \(K(354.05) = \Phi(0) = 0.5;\)

\(K(353.1) = \Phi(1.645) = 0.95.\)

(d) \(353.83 < 354.05\), reject \(H_0;\)

(e) \(p\)-value \(= P(\overline{X} \leq 353.83; \mu = 355)\)

\[= P(Z \leq -2.03) = 0.0212.\]

10.2–4 (a) \(K(\mu) = P(\overline{X} \geq 83; \mu)\)

\[= P\left(Z \geq \frac{83 - \mu}{10/5}\right) = 1 - \Phi\left(\frac{83 - \mu}{2}\right);\]
Some Theory

Figure 10.2–2: \( K(\mu) = \Phi([354.05 - \mu]/[2/\sqrt{12}]) \)

(b) \( \alpha = K(80) = 1 - \Phi(1.5) = 0.0668; \)

(c) \[ 
\begin{align*}
K(80) &= \alpha = 0.0668, \\
K(83) &= 1 - \Phi(0) = 0.5000, \\
K(86) &= 1 - \Phi(-1.5) = 0.9332;
\end{align*}
\]

(d)

Figure 10.2–4: \( K(\mu) = 1 - \Phi([83 - \mu]/2) \)

(e) \( p\)-value \( = P(\bar{X} \geq 83.41; \mu = 80) \)
   \( = P(Z \geq 1.705) = 0.0441. \)

10.2–6 (a) \( K(\mu) = P(\bar{X} \leq 668.94; \mu) = P\left( Z \leq \frac{668.94 - \mu}{140/5} \right) \)
   \( = \Phi\left( \frac{668.94 - \mu}{140/5} \right); \)

(b) \( \alpha = K(715) = \Phi\left( \frac{668.94 - 715}{140/5} \right) \)
   \( = \Phi(-1.645) = 0.05; \)
(c) \[ K(668.94) = \Phi(0) = 0.5; \]
\[ K(622.88) = \Phi(1.645) = 0.95; \]

(d) \[ K(\mu) \]

Figure 10.2–6: \[ K(\mu) = \Phi([668.94 - \mu]/[140/3]) \]

(e) \[ \bar{x} = 667.992 < 668.94, \text{ reject } H_0; \]

(f) \[ p\text{-value} = \ P(\bar{X} \leq 667.92; \mu = 715) \]
\[ = P(Z \leq -1.68) = 0.0465. \]

10.2–8 (a) and (b)

Figure 10.2–8: Power functions corresponding to different critical regions and different sample sizes

10.2–10 Let \( Y = \sum_{i=1}^{8} X_i \). Then \( Y \) has a Poisson distribution with mean \( \mu = 8\lambda \).

(a) \[ \alpha = P(Y \geq 8; \lambda = 0.5) = 1 - P(Y \leq 7; \lambda) = 0.5 \]
\[ = 1 - 0.949 = 0.051. \]

(b) \[ K(\lambda) = 1 - \sum_{y=0}^{7} \frac{(8\lambda)^{y\mu}e^{-8\lambda}}{y!}. \]
(c) \[K(0.75) = 1 - 0.744 = 0.256,\]
\[K(1.00) = 1 - 0.453 = 0.547,\]
\[K(1.25) = 1 - 0.220 = 0.780.\]

Figure 10.2–10: \(K(\lambda) = 1 - P(Y \leq 7; \lambda)\)

10.2–12 (a) \[\sum_{i=1}^{3} X_i\] has gamma distribution with parameters \(\alpha = 3\) and \(\theta\). Thus

\[K(\theta) = \int_{0}^{2} \frac{1}{\Gamma(3)\theta^{3}} x^{3-1} e^{-x/\theta} dx;\]

(b) \[K(\theta) = \int_{0}^{2} \frac{x^2 e^{-x/\theta}}{2\theta^3} dx = \frac{1}{2\theta^3} \left[-\theta x^2 e^{-x/\theta} - 2\theta^2 x e^{-x/\theta} - 2\theta^3 e^{-x/\theta}\right]_0^2\]

\[= 1 - \sum_{y=0}^{2} \frac{(2/\theta)^y}{y!} e^{-2/\theta};\]

Figure 10.2–12: \(K(\theta) = P(\sum_{i=1}^{3} X_i \leq 2)\)
(c) \( K(2) = 1 - \sum_{y=0}^{2} \frac{1^{y}e^{-1}}{y!} = 1 - 0.920 = 0.080; \)
\( K(1) = 1 - 0.677 = 0.323; \)
\( K(1/2) = 1 - 0.238 = 0.762; \)
\( K(1/4) = 1 - 0.014 = 0.986. \)

10.3 Best Critical Regions

10.3–2 (a) \[
\frac{L(4)}{L(16)} = \frac{(1/2\sqrt{2\pi})^n \exp[-\Sigma x_i^2 / 8]}{(1/4\sqrt{2\pi})^n \exp[-3\Sigma x_i^2 / 32]}
\]
\[
= 2^n \exp[-3\Sigma x_i^2 / 32] \leq k
\]
\[
-\frac{3}{32} \sum_{i=1}^{n} x_i^2 \leq \ln k - \ln 2^n
\]
\[
\sum_{i=1}^{n} x_i^2 \geq -\left(\frac{32}{3}\right)(\ln k - \ln 2^n) = c;
\]
(b) \( 0.05 = P\left(\sum_{i=1}^{15} X_i^2 \geq c; \sigma^2 = 4\right) \)
\[
= P\left(\frac{\sum_{i=1}^{15} X_i^2}{4} \geq \frac{c}{4}; \sigma^2 = 4\right)
\]
Thus \(\frac{c}{4} = \chi_0.05^2(15) = 25\) and \(c = 100.\)

(c) \( \beta = P\left(\sum_{i=1}^{15} X_i^2 < 100; \sigma^2 = 16\right) \)
\[
= P\left(\frac{\sum_{i=1}^{15} X_i^2}{16} < 6.25\right) \approx 0.025.
\]

10.3–4 (a) \[
\frac{L(0.9)}{L(0.8)} = \frac{(0.9)\Sigma x_i (0.1)^{n-\Sigma x_i}}{(0.8)\Sigma x_i (0.2)^{n-\Sigma x_i}} \leq k
\]
\[
\left[\left(\frac{9}{8}\right) \left(\frac{2}{1}\right)\right]^{\sum_{i=1}^{n} x_i} \left[\frac{1}{2}\right]^n \leq k
\]
\[
\left(\sum_{i=1}^{n} x_i\right) \ln(9/4) \leq \ln k + n \ln 2
\]
\[
y = \sum_{i=1}^{n} x_i \leq \frac{\ln k + n \ln 2}{\ln(9/4)} = c.
\]
Recall that the distribution of the sum of Bernoulli trials, \(Y\), is \(b(n, p).\)

(b) \( 0.10 = P[Y \leq n(0.85); p = 0.9]\)
\[
= P\left[Y - n(0.9) \leq \frac{n(0.85) - n(0.9)}{\sqrt{n(0.9)(0.1)}}; p = 0.9\right].
\]
It is true, approximately, that \[ \frac{n(-0.05)}{\sqrt{n}(0.3)} = -1.282 \]

\[ n = 59.17 \text{ or } n = 60. \]

(c) \[ P[Y > n(0.85) = 51; \ p = 0.8] = P \left[ \frac{Y - 60(0.8)}{\sqrt{60(0.8)(0.2)}} > \frac{51 - 48}{\sqrt{9.6}}; \ p = 0.8 \right] \]
\[ \approx P(Z \geq 0.97) = 0.166. \]

(d) Yes.

10.3–6 (a) \[ 0.05 = P \left( \frac{X - 80}{3/4} \geq \frac{c_1 - 80}{3/4} \right) \]
\[ = 1 - \Phi \left( \frac{c_1 - 80}{3/4} \right). \]

Thus
\[ \frac{c_1 - 80}{3/4} = 1.645 \]
\[ c_1 = 81.234. \]

Similarly,
\[ \frac{c_2 - 80}{3/4} = -1.645 \]
\[ c_2 = 78.766; \]
\[ \frac{c_3}{3/4} = 1.96 \]
\[ c_3 = 1.47. \]

(b) \[ K_1(\mu) = 1 - \Phi([81.234 - \mu]/[3/4]); \]
\[ K_2(\mu) = \Phi([78.766 - \mu]/[3/4]); \]
\[ K_3(\mu) = 1 - \Phi([81.47 - \mu]/[3/4]) + \Phi([78.53 - \mu]/[3/4]). \]
10.4 Likelihood Ratio Tests

10.4–2 (a) If \( \mu \in \omega \) (that is, \( \mu \geq 10.35 \)), then \( \hat{\mu} = \bar{x} \) if \( \bar{x} \geq 10.35 \), but \( \hat{\mu} = 10.35 \) if \( \bar{x} < 10.35 \).

Thus \( \lambda = 1 \) if \( \bar{x} \geq 10.35 \); but, if \( \bar{x} < 10.35 \), then

\[
\lambda = \frac{[1/(0.3)(2\pi)]^{n/2} \exp[- \sum_{i=1}^{n} (x_i - 10.35)^2/(0.06)]}{[1/(0.3)(2\pi)]^{n/2} \exp[- \sum_{i=1}^{n} (x_i - \bar{x})^2/(0.06)]} \leq k \\
\exp\left[ - \frac{n}{0.06} (\bar{x} - 10.35)^2 \right] \leq k \\
- \frac{n}{0.06} (\bar{x} - 10.35)^2 \leq \ln k \\
\frac{\bar{x} - 10.35}{\sqrt{0.03/n}} \leq \sqrt{-2 \ln k} = -z_{0.05} = -1.645.
\]

(b) \( \frac{10.31 - 10.35}{\sqrt{0.03/50}} = -1.633 > -1.645 \); do not reject \( H_0 \).

(c) \( p \)-value = \( P(Z \leq -1.633) = 0.0513 \).

10.4–4 (a) \( |z| = \frac{|\bar{x} - 59|}{15/\sqrt{n}} \geq 1.96 \);

(b) \( |z| = \frac{|56.13 - 59|}{15/10} = |-1.913| < 1.96 \), do not reject \( H_0 \);

(c) \( p \)-value = \( P(|Z| \geq 1.913) = 0.0558 \).

10.4–6 \( t = \frac{324.8 - 335}{40/\sqrt{17}} = -1.051 > -1.337 \), do not reject \( H_0 \).

10.4–8 In \( \Omega \), \( \hat{\mu} = \bar{x} \). Thus,

\[
\lambda = \frac{(1/\theta_0)^n \exp[- \sum_{i=1}^{n} x_i/\theta_0]}{(1/\bar{x})^n \exp[- \sum_{i=1}^{n} x_i/\bar{x}]} \leq k \\
\left( \frac{\bar{x}}{\theta_0} \right)^n \exp[-n(\bar{x}/\theta_0 - 1)] \leq k.
\]

Plotting \( \lambda \) as a function of \( w = \bar{x}/\theta_0 \), we see that \( \lambda = 0 \) when \( \bar{x}/\theta_0 = 0 \), it has a maximum when \( \bar{x}/\theta_0 = 1 \), and it approaches 0 as \( \bar{x}/\theta_0 \) becomes large. Thus \( \lambda \leq k \) when \( \bar{x} \leq c_1 \) or \( \bar{x} \geq c_2 \).

Since the distribution of \( \frac{2}{\theta_0} \sum_{i=1}^{n} X_i \) is \( \chi^2(2n) \) when \( H_0 \) is true, we could let the critical region be such that we reject \( H_0 \) if

\[
\frac{2}{\theta_0} \sum_{i=1}^{n} X_i \leq \chi^2_{1-\alpha/2}(2n) \quad \text{or} \quad \frac{2}{\theta_0} \sum_{i=1}^{n} X_i \geq \chi^2_{\alpha/2}(2n).
\]
10.5 Chebyshev’s Inequality and Convergence in Probability

10.5–2 \text{Var}(X) = 298 - 17^2 = 9.

(a) \[ P(10 < X < 24) = P(10 - 17 < X - 17 < 24 - 17) = P(|X - 17| < 7) \geq 1 - \frac{9}{49} = \frac{40}{49}, \]

because \( k = 7/3; \)

(b) \( P(|X - 17| \geq 16) \leq \frac{9}{16^2} = 0.035, \) because \( k = 16/3. \)

10.5–4 (a) \[ P\left( \left| \frac{Y}{100} - 0.5 \right| < 0.08 \right) \geq 1 - \frac{(0.5)(0.5)}{100(0.08)^2} = 0.609; \]

because \( k = 0.08/\sqrt{(0.5)(0.5)/100}; \)

(b) \[ P\left( \left| \frac{Y}{500} - 0.5 \right| < 0.08 \right) \geq 1 - \frac{(0.5)(0.5)}{500(0.08)^2} = 0.922; \]

because \( k = 0.08/\sqrt{(0.5)(0.5)/500}; \)

(c) \[ P\left( \left| \frac{Y}{1000} - 0.5 \right| < 0.08 \right) \geq 1 - \frac{(0.5)(0.5)}{1000(0.08)^2} = 0.961, \]

because \( k = 0.08/\sqrt{(0.5)(0.5)/1000}. \)

10.5–6 \[ P(75 < \bar{X} < 85) = P(75 - 80 < \bar{X} - 80 < 85 - 80) = P(|\bar{X} - 80| < 5) \geq 1 - \frac{60/15}{25} = 0.84, \]

because \( k = 5/\sqrt{60/15} = 5/2. \)
10.5–8 (a) $P(-w < W < w) = 1 - \frac{1}{w^2}$

$F(w) - F(-w) = 1 - \frac{1}{w^2}$

$F(w) - [1 - F(w)] = 1 - \frac{1}{w^2}$

$2F(w) = 2 - \frac{1}{w^2}$

$F(w) = 1 - \frac{1}{2w^2}$

For $w > 1 > 0$, $f(w) = F'(w) = \frac{1}{w^3}$.

By symmetry, for $w < -1 < 0$, $f(w) = F'(w) = -\frac{1}{w^3}$.

(b) $E(W) = \int_{-\infty}^{-1} \frac{1}{w^3} dw + \int_{1}^{\infty} \frac{w}{w^3} dw$

$= -1 + 1 = 0.$

$E(W^2) = \infty$ so the variance does not exist.

10.6 Limiting Moment-Generating Functions

10.6–2 Using Table III with $\lambda = np = 400(0.005) = 2$, $P(X \leq 2) = 0.677$.

10.6–4 Let $Y = \sum_{i=1}^{n} X_i$, where $X_1, X_2, \ldots, X_n$ are mutually independent $\chi^2(1)$ random variables. Then $\mu = E(X_i) = 1$ and $\sigma^2 = \text{Var}(X_i) = 2, i = 1, 2, \ldots, n$. Hence

$$\frac{Y - n\mu}{\sqrt{n\sigma^2}} = \frac{Y - n}{\sqrt{2n}}$$

has a limiting distribution that is $N(0, 1)$.

10.7 Asymptotic Distributions of Maximum Likelihood Estimators

10.7–2 (a) $f(x; p) = p^x(1-p)^{1-x}, \quad x = 0, 1$

$\ln f(x; p) = x \ln p + (1 - x) \ln(1 - p)$

$\frac{\partial \ln f(x; p)}{\partial p} = \frac{x}{p} + \frac{x - 1}{1 - p}$

$\frac{\partial^2 \ln f(x; p)}{\partial p^2} = -\frac{x}{p^2} + \frac{x - 1}{(1 - p)^2}$

$$E\left[ \frac{X}{p^2} - \frac{X - 1}{(1 - p)^2} \right] = \frac{p}{p^2} - \frac{p - 1}{(1 - p)^2} = \frac{1}{p(1 - p)}.$$  

Rao-Cramér lower bound = $\frac{p(1-p)}{n}$.

(b) $\frac{p(1-p)/n}{p(1-p)/n} = 1.$
10.7-4  (a) \[ \ln f(x; \theta) = -2 \ln \theta + \ln x - x/\theta \]

\[
\frac{\partial \ln f(x; \theta)}{\partial \theta} = - \frac{2}{\theta} + \frac{x}{\theta^2}
\]

\[
\frac{\partial^2 \ln f(x; \theta)}{\partial \theta^2} = \frac{2}{\theta^2} - \frac{2x}{\theta^3}
\]

\[
E \left[ - \frac{2}{\theta^2} + \frac{2X}{\theta^3} \right] = - \frac{2}{\theta^2} + \frac{2(2\theta)}{\theta^3} = 2
\]

Rao-Cramér lower bound = \( \frac{\theta^2}{2n} \).

(b) Very similar to (a); answer = \( \frac{\theta^2}{3n} \).

(c) \[ \ln f(x; \theta) = - \ln \theta + \left( \frac{1 - \theta}{\theta} \right) \ln x \]

\[
\frac{\partial \ln f(x; \theta)}{\partial \theta} = - \frac{1}{\theta} - \frac{1}{\theta^2} \ln x
\]

\[
\frac{\partial^2 \ln f(x; \theta)}{\partial \theta^2} = \frac{1}{\theta^2} + \frac{2}{\theta^3} \ln x
\]

\[
E[\ln X] = \int_0^1 \ln x \frac{x^{(1-\theta)/\theta}}{\theta} dx. \quad \text{Let } y = \ln x, \ dy = \frac{1}{x} \ dx.
\]

\[
= - \int_0^\infty \frac{y}{\theta} e^{-y(1-\theta)/\theta} e^{-y} dy = -\theta \Gamma(2) = -\theta
\]

Rao-Cramér lower bound = \( \frac{1}{n \left( -\frac{1}{\theta^2} + \frac{2}{\theta^2} \right)} = \frac{\theta^2}{n} \).
Chapter 11

Quality Improvement Through Statistical Methods

11.1 Time Sequences

Figure 11.1–2: Apple weights from scales 5 and 6
(b) From 1960 to the mid 1970’s there is a downward trend and then a fairly steady rate followed by a short upward trend and then another downward trend.

(c) The data are cyclic, leading to a bimodal distribution.
11.1–8 (a) and (b)

Figure 11.1–8: (a) Durations of and (b) times between eruptions of Old Faithful Geyser

11.1–10 (a) and (b)

Figure 11.1–10: (a) Numbers of users and (b) Number of minutes used on each of 40 ports
11.2 Statistical Quality Control

11.2–2 (a) \( \bar{x} = 67.44, \bar{s} = 2.392, \bar{R} = 5.88; \)
(b) \( \text{UCL} = \bar{x} + 1.43(\bar{s}) = 67.44 + 1.43(2.392) = 70.86; \)
\[ \text{LCL} = \bar{x} - 1.43(\bar{s}) = 67.44 - 1.43(2.392) = 64.02; \]
(c) \( \text{UCL} = 2.09(\bar{s}) = 2.09(2.392) = 5.00; \text{LCL} = 0; \)

\[ \text{Figure 11.2–2: (b) } \bar{x}-\text{chart using } \bar{s} \text{ and (c) } s-\text{chart} \]

(d) \( \text{UCL} = \bar{x} + 0.58(\bar{R}) = 67.44 + 0.58(5.88) = 70.85; \)
\[ \text{LCL} = \bar{x} - 0.58(\bar{R}) = 67.44 - 0.58(5.88) = 64.03; \]
(e) \( \text{UCL} = 2.11(\bar{R}) = 2.11(5.88) = 12.41; \text{LCL} = 0; \)

\[ \text{Figure 11.2–2: (d) } \bar{x}-\text{chart using } \bar{R} \text{ and (e) } R-\text{chart} \]

(f) Quite well until near the end.
11.2–4 \( \bar{x} = 117.141, \bar{s} = 1.689, \bar{R} = 4.223; \)

(a) UCL = \( \bar{x} + 0.58(\bar{R}) = 117.141 + 0.58(4.223) = 119.59; \)
\[ \text{LCL} = \bar{x} - 0.58(\bar{R}) = 117.141 - 0.58(4.223) = 114.69; \]
\[ \text{UCL} = 2.09(\bar{R}) = 2.11(4.223) = 8.91; \text{LCL} = 0; \]

![Figure 11.2-4: (a) \( \bar{x} \)-chart using \( \bar{R} \) and \( R \)-chart](image1)

(b) UCL = \( \bar{x} + 1.43(\bar{s}) = 117.141 + 1.43(1.689) = 119.56; \)
\[ \text{LCL} = \bar{x} - 1.43(\bar{s}) = 117.141 - 1.43(1.689) = 114.73; \]
\[ \text{UCL} = 2.11(\bar{s}) = 2.11(5.88) = 12.41; \text{LCL} = 0; \]

![Figure 11.2-4: (b) \( \bar{x} \)-chart using \( \bar{s} \) and \( s \)-chart](image2)

(c) The filling machine seems to be doing quite well.
11.2–6 With $\overline{p} = 0.0254$, \( UCL = \overline{p} + 3\sqrt{\overline{p}(1 - \overline{p})}/100 = 0.073; \)

with $\overline{p} = 0.02$, \( UCL = \overline{p} + 3\sqrt{\overline{p}(1 - \overline{p})}/100 = 0.062; \)

In both cases we see that problems are arising near the end.

Figure 11.2–6: \( p \)-charts using $\overline{p} = 0.0254$ and $\overline{p} = 0.02$

11.2–8 (a) \( UCL = \overline{c} + 3\sqrt{\overline{c}} = 1.80 + 3\sqrt{1.80} = 5.825; \)  \( LCL = 0; \)

(b) The process is in statistical control.
11.3 General Factorial and $2^k$ Factorial Designs


(b) 

<table>
<thead>
<tr>
<th>Identity of Effect</th>
<th>Ordered Effect</th>
<th>Percentile from N(0,1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[A]$</td>
<td>-3.550</td>
<td>12.5</td>
</tr>
<tr>
<td>$[A]C$</td>
<td>-0.525</td>
<td>62.5</td>
</tr>
<tr>
<td>$[B]$</td>
<td>-1.450</td>
<td>37.5</td>
</tr>
<tr>
<td>$[BC]$</td>
<td>0.375</td>
<td>75.0</td>
</tr>
<tr>
<td>$[C]$</td>
<td>3.20</td>
<td>87.5</td>
</tr>
<tr>
<td>$[AB]$</td>
<td>-1.525</td>
<td>25.0</td>
</tr>
<tr>
<td>$[B]C$</td>
<td>0.375</td>
<td>75.0</td>
</tr>
<tr>
<td>$[AC]$</td>
<td>-0.525</td>
<td>62.5</td>
</tr>
</tbody>
</table>

The main effects of temperature (A) and concentration (C) are significant.