1. Let f be defined for all real x, and suppose that

$$|f(x) - f(y)| \leq (x - y)^2$$

for all real x and y. Prove that f is constant.

Proof: $|f(x) - f(y)| \leq (x - y)^2$ for all real x and y. Fix y, $|f(x) - f(y)| \leq |x - y|$. Let $x \to y$, therefore,

$$0 \leq \lim_{x \to y} \frac{f(x) - f(y)}{x - y} \leq \lim_{x \to y} |x - y| = 0$$

It implies that $(f(x) - f(y))/(x - y) \to 0$ as $x \to y$. Hence $f'(y) = 0$, $f = \text{const}$.

2. Suppose $f'(x) > 0$ in (a, b). Prove that f is strictly increasing in (a, b), and let g be its inverse function. Prove that g is differentible, and that

$$g'(f(x)) = \frac{1}{f'(x)} \quad (a < x < b).$$

Proof: For every pair $x > y$ in (a, b), $f(x) - f(y) = f'(c)(x - y)$ where $y < c < x$ by Mean-Value Theorem. Note that $c \in (a, b)$ and $f'(x) > 0$ in (a, b), hence $f'(c) > 0$. $f(x) - f(y) > 0$, $f(x) > f(y)$ if $x > y$, f is strictly increasing in (a, b).

Let $\Delta g = g(x_0 + h) - g(x_0)$. Note that $x_0 = f(g(x_0))$, and thus,

$$(x_0 + h) - x_0 = f(g(x_0 + h)) - f(g(x_0)),$$
\[h = f(g(x_0) + \Delta g) - f(g(x_0)) = f(g + \Delta g) - f(g). \]

Thus we apply the fundamental lemma of differentiation,

\[h = \left[f'(g) + \eta(\Delta g)\right] \Delta g, \]

Note that \(f'(g(x)) > 0 \) for all \(x \in (a, b) \) and \(\eta(\Delta g) \to 0 \) as \(h \to 0 \), thus,

\[\lim_{h \to 0} \Delta g/h = \lim_{h \to 0} \frac{1}{f'(g(x))} \cdot \frac{1}{\frac{\eta(\Delta g)}{h}} = \frac{1}{f'(g(x))}. \]

Thus \(g'(x) = \frac{1}{f'(g(x))}, \ g'(f(x)) = \frac{1}{f'(x)}. \)

3. Suppose \(g \) is a real function on \(R^1 \), with bounded derivative (say \(|g'| \leq M \)). Fix \(\epsilon > 0 \), and define \(f(x) = x + \epsilon g(x) \). Prove that \(f \) is one-to-one if \(\epsilon \) is small enough. (A set of admissible values of \(\epsilon \) can be determined which depends only on \(M \).)

Proof: For every \(x < y \), and \(x, y \in R \), we will show that \(f(x) \neq f(y) \).

By using Mean-Value Theorem:

\[g(x) - g(y) = g'(c)(x - y) \quad \text{where} \quad x < c < y, \]

\[(x - y) + \epsilon((x) - g(y)) = (\epsilon g'(c) + 1)(x - y), \]

that is,

\[f(x) - f(y) = (\epsilon g'(c) + 1)(x - y). \quad (*) \]

Since \(|g'(x)| \leq M \), \(-M \leq g'(x) \leq M \) for all \(x \in R \). Thus \(1 - \epsilon M \leq \epsilon g'(c) + 1 \leq 1 + \epsilon M \), where \(x < c < y \). Take \(c = \frac{1}{2M} \), and \(\epsilon g'(c) + 1 > 0 \) where \(x < c < y \) for all \(x, y \). Take into equation \((*)\), and \(f(x) - f(y) < 0 \) since \(x - y < 0 \), that is, \(f(x) \neq f(y) \), that is, \(f \) is one-to-one (injective).
4. If
\[C_0 + \frac{C_1}{2} + \ldots + \frac{C_{n-1}}{n} + \frac{C_n}{n+1} = 0, \]
where \(C_0, \ldots, C_n \) are real constants, prove that the equation
\[C_0 + C_1 x + \ldots + C_{n-1} x^{n-1} + C_n x^n = 0 \]
has at least one real root between 0 and 1.

Proof: Let \(f(x) = C_0 x + \ldots + \frac{C_n}{n+1} x^{n+1} \). \(f \) is differentiable in \(R^1 \) and \(f(0) = f(1) = 0 \). Thus, \(f(1) - f(0) = f'(c) \) where \(c \in (0, 1) \) by Mean-Value Theorem. Note that
\[f'(x) = C_0 + C_1 x + \ldots + C_{n-1} x^{n-1} + C_n x^n. \]
Thus, \(c \in (0, 1) \) is one real root between 0 and 1 of that equation.

5. Suppose \(f \) is defined and differentiable for every \(x > 0 \), and \(f'(x) \to 0 \) as \(x \to +\infty \). Put \(g(x) = f(x + 1) - f(x) \). Prove that \(g(x) \to 0 \) as \(x \to +\infty \).

Proof: \(f(x + 1) - f(x) = f'(c)(x + 1 - x) \) where \(x < c < x + 1 \) by Mean-Value Theorem. Thus, \(g(x) = f'(c) \) where \(x < c < x + 1 \), that is,
\[\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} f'(c) = \lim_{c \to +\infty} f'(c) = 0. \]

6. Suppose
 (a) \(f \) is continuous for \(x \geq 0 \),
 (b) \(f'(x) \) exists for \(x > 0 \),
 (c) \(f(0) = 0 \),
(d) f' is monotonically increasing.

Put

$$g(x) = \frac{f(x)}{x} \quad (x > 0)$$

and prove that g is monotonically increasing.

Proof: Our goal is to show $g'(x) > 0$ for all $x > 0$

$$\iff g'(x) = \frac{x f'(x) - f(x)}{x^2} > 0 \iff f'(x) > \frac{f(x)}{x}.$$

Since $f'(x)$ exists, $f(x) - f(0) = f'(c)(x - 0)$ where $0 < c < x$ by Mean-Value Theorem. $\Rightarrow f'(c) = \frac{f(x)}{x}$ where $0 < c < x$. Since f' is monotonically increasing, $f'(x) > f'(c)$, that is, $f'(x) > \frac{f(x)}{x}$ for all $x > 0$.

7. Suppose $f'(x)$, $g'(x)$ exist, $g'(x) \neq 0$, and $f(x) = g(x) = 0$. Prove that

$$\lim_{t \to x} \frac{f(t)}{g(t)} = \frac{f'(x)}{g'(x)}.$$

(This holds also for complex functions.)

Proof:

$$\frac{f'(t)}{g'(t)} = \lim_{t \to x} \frac{f(t) - f(x)}{g(t) - g(x)} = \lim_{t \to x} \frac{f(t)}{g(t)} = \lim_{t \to x} \frac{f(t)}{g(t)}$$

Surely, this holds also for complex functions.

8. Suppose $f'(x)$ is continuous on $[a, b]$ and $\epsilon > 0$. Prove that there exists $\delta > 0$ such that

$$\left| \frac{f(t) - f(x)}{t - x} - f'(x) \right| < \epsilon$$

whenever $0 < |t - x| < \delta$, $a \leq x \leq b$, $a \leq t \leq b$. (This could be expressed by saying f is uniformly differentiable on $[a, b]$ if f' is continuous on $[a, b]$.) Does this hold for vector-valued functions too?
Proof: Since $f'(x)$ is continuous on a compact set $[a, b]$, $f'(x)$ is uniformly continuous on $[a, b]$. Hence, for any $\epsilon > 0$ there exists $\delta > 0$ such that

$$|f'(t) - f'(x)| < \epsilon$$

whenever $0 < |t - x| < \delta$, $a \leq x \leq b$, $a \leq t \leq b$. Thus, $f'(c) = \frac{f(t) - f(x)}{t - x}$ where c between t and x by Mean-Value Theorem. Note that $0 < |c - x| < \delta$ and thus $|f'(c) - f'(x)| < \epsilon$, thus,

$$|\frac{f(t) - f(x)}{t - x} - f'(x)| < \epsilon$$

whenever $0 < |t - x| < \delta$, $a \leq x \leq b$, $a \leq t \leq b$.

Note: It does not hold for vector-valued functions. If not, take

$$f(x) = (\cos x, \sin x),$$

$[a, b] = [0, 2\pi]$, and $x = 0$. Hence $f'(x) = (-\sin x, \cos x)$. Take any $1 > \epsilon > 0$, there exists $\delta > 0$ such that

$$|\frac{f(t) - f(0)}{t - 0} - f'(0)| < \epsilon$$

whenever $0 < |t| < \delta$ by our hypothesis. With calculating,

$$|\left(\frac{\cos t - 1}{t}, \frac{\sin t}{t}\right) - (0, 1)| < \epsilon$$

$$|\left(\frac{\cos t - 1}{t}, \frac{\sin t}{t} - 1\right)| < \epsilon$$

$$\left(\frac{\cos t - 1}{t}\right)^2 + \left(\frac{\sin t}{t} - 1\right)^2 < \epsilon^2 < \epsilon$$

$$\frac{2}{t^2} + 1 - \frac{2(\cos t + \sin t)}{t} < \epsilon$$

since $1 > \epsilon > 0$. Note that

$$\frac{2}{t^2} + 1 - \frac{4}{t} < \frac{2}{t^2} + 1 - \frac{2(\cos t + \sin t)}{t}$$

But $\frac{2}{t^2} + 1 - \frac{4}{t} \to +\infty$ as $t \to 0$. It contradicts.
9. Let \(f \) be a continuous real function on \(R^1 \), of which it is known that
\(f'(x) \) exists for all \(x \neq 0 \) and that \(f'(x) \to 0 \) as \(x \to 0 \). Does it follow
that \(f'(0) \) exists?

Note: We prove a more general exercise as following.
Suppose that \(f \) is continuous on an open interval \(I \) containing \(x_0 \), sup-
pose that \(f' \) is defined on \(I \) except possibly at \(x_0 \), and suppose that
\(f'(x) \to L \) as \(x \to x_0 \). Prove that \(f'(x_0) = L \).

Proof of the Note: Using L’Hospital’s rule:
\[
\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{h \to 0} f'(x_0 + h)
\]
By our hypothesis: \(f'(x) \to L \) as \(x \to x_0 \). Thus,
\[
\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = L,
\]
Thus \(f'(x_0) \) exists and
\[
f'(x_0) = L.
\]

10. Suppose \(f \) and \(g \) are complex differentiable functions on \((0, 1)\), \(f(x) \to 0 \),
\(g(x) \to 0 \), \(f'(x) \to A \), \(g'(x) \to B \) as \(x \to 0 \), where \(A \) and \(B \) are complex
numbers, \(B \neq 0 \). Prove that
\[
\lim_{x \to 0} \frac{f(x)}{g(x)} = \frac{A}{B}.
\]
Compare with Example 5.18. **Hint:**
\[
\frac{f(x)}{g(x)} = \left(\frac{f(x)}{x} - A \right) \frac{x}{g(x)} + A \frac{x}{g(x)}.
\]
Apply Theorem 5.13 to the real and imaginary parts of \(\frac{f(x)}{x} \) and \(\frac{g(x)}{x} \).
Proof: Write \(f(x) = f_1(x) + i f_2(x) \), where \(f_1(x) \), \(f_2(x) \) are real-valued functions. Thus,
\[
\frac{df(x)}{dx} = \frac{df_1(x)}{dx} + i \frac{df_2(x)}{dx},
\]
Apply L’Hospital’s rule to \(\frac{f_1(x)}{x} \) and \(\frac{f_2(x)}{x} \), we have
\[
\lim_{x \to 0} \frac{f_1(x)}{x} = \lim_{x \to 0} f_1'(x)
\]
\[
\lim_{x \to 0} \frac{f_2(x)}{x} = \lim_{x \to 0} f_2'(x)
\]
Combine \(f_1(x) \) and \(f_2(x) \), we have
\[
\lim_{x \to 0} \frac{f_1(x)}{x} + i \lim_{x \to 0} \frac{f_2(x)}{x} = \lim_{x \to 0} \frac{f_1(x)}{x} + i \lim_{x \to 0} \frac{f_2(x)}{x} = \lim_{x \to 0} \frac{f(x)}{x}
\]
or
\[
\lim_{x \to 0} \frac{f_1(x)}{x} + i \lim_{x \to 0} \frac{f_2(x)}{x} = \lim_{x \to 0} f_1'(x) + i \lim_{x \to 0} f_2'(x) = \lim_{x \to 0} f'(x)
\]
Thus, \(\lim_{x \to 0} \frac{f(x)}{x} = \lim_{x \to 0} f'(x) \). Similarly, \(\lim_{x \to 0} \frac{g(x)}{x} = \lim_{x \to 0} g'(x) \).
Note that \(B \neq 0 \). Thus,
\[
\lim_{x \to 0} \frac{f(x)}{g(x)} = \lim_{x \to 0} \left(\frac{f(x)}{x} - A \right) \frac{x}{g(x)} + A \frac{x}{g(x)}
\]
\[
= (A - A) \frac{1}{B} + A \frac{B}{B} = A
\]
Note: In Theorem 5.13, we know \(g(x) \to +\infty \) as \(x \to 0 \). (\(f(x) = x \), and \(g(x) = x + x^2e^{i\pi/2} \)).

11. Suppose \(f \) is defined in a neighborhood of \(x \), and suppose \(f''(x) \) exists. Show that
\[
\lim_{h \to 0} \frac{f(x + h) + f(x - h) - 2f(x)}{h^2} = f''(x)
\]
Show by an example that the limit may exist even if \(f''(x) \) does not.

Hint: Use Theorem 5.13.

Proof: By using L’Hospital’s rule: (respect to \(h \).)

\[
\lim_{h \to 0} \frac{f(x + h) + f(x - h) - 2f(x)}{h^2} = \lim_{h \to 0} \frac{f'(x + h) - f'(x - h)}{2h}
\]

Note that

\[
f''(x) = \frac{1}{2} \left(f''(x) + f''(x) \right)
\]

\[
= \frac{1}{2} \left(\lim_{h \to 0} \frac{f'(x + h) - f'(x)}{h} + \lim_{h \to 0} \frac{f'(x - h) - f'(x)}{-h} \right)
\]

\[
= \frac{1}{2} \lim_{h \to 0} \frac{f'(x + h) - f'(x - h)}{h}
\]

\[
= \lim_{h \to 0} \frac{f'(x + h) - f'(x - h)}{2h}
\]

Thus,

\[
\frac{f(x + h) + f(x - h) - 2f(x)}{h^2} \to f''(x)
\]

as \(h \to 0 \). Counter-example: \(f(x) = x|x| \) for all real \(x \).

12. If \(f(x) = |x|^3 \), compute \(f'(x) \), \(f''(x) \) for all real \(x \), and show that \(f^{(3)}(0) \) does not exist.

Proof: \(f'(x) = 3|x|^2 \) if \(x \neq 0 \). Consider

\[
\frac{f(h) - f(0)}{h} = \frac{|h|^3}{h}
\]

Note that \(|h|/h \) is bounded and \(|h|^2 \to 0 \) as \(h \to 0 \). Thus,

\[
f'(0) = \lim_{h \to 0} \frac{f(h) - f(0)}{h} = 0.
\]

Hence, \(f'(x) = 3|x|^2 \) for all \(x \). Similarly,

\[
f''(x) = 6|x|.
\]
Thus,
\[\frac{f''(h) - f(0)}{h} = 6 \frac{|h|}{h} \]
Since \(\frac{|h|}{h} = 1 \) if \(h > 0 \) and \(= -1 \) if \(h < 0 \), \(f''(0) \) does not exist.

13. Suppose \(a \) and \(c \) are real numbers, \(c > 0 \), and \(f \) is defined on \([-1, 1]\) by
\[f(x) = \begin{cases} x^a \sin(x^{-c}) & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases} \]
Prove the following statements:

(a) \(f \) is continuous if and only if \(a > 0 \).
(b) \(f'(0) \) exists if and only if \(a > 1 \).
(c) \(f' \) is bounded if and only if \(a \geq 1 + c \).
(d) \(f' \) is continuous if and only if \(a > 1 + c \).
(e) \(f''(0) \) exists if and only if \(a > 2 + c \).
(f) \(f'' \) is bounded if and only if \(a \geq 2 + 2c \).
(g) \(f'' \) is continuous if and only if \(a > 2 + 2c \).

Proof: For (a): \(\Rightarrow \) \(f \) is continuous iff for any sequence \(\{x_n\} \to 0 \) with \(x_n \neq 0 \), \(x_n^a \sin x_n^{-c} \to 0 \) as \(n \to \infty \). In particular, take
\[x_n = \left(\frac{1}{2n\pi + \pi/2} \right) \to 0 \]
and thus \(x_n^a \to 0 \) as \(n \to \infty \). Hence \(a > 0 \). (If not, then \(a = 0 \) or \(a < 0 \). When \(a = 0 \), \(x_n^a = 1 \). When \(a < 0 \), \(x_n^a = 1/x_n^{-a} \to \infty \) as \(n \to \infty \). It contradicts.)

\(\Leftarrow \) \(f \) is continuous on \([-1, 1] - \{0\}\) clearly. Note that
\[-|x^a| \leq x^a \sin(x^{-c}) \leq |x^a|, \]
and \(|x^a| \to 0 \) as \(x \to 0 \) since \(a > 0 \). Thus \(f \) is continuous at \(x = 0 \). Hence \(f \) is continuous.
For (b): \(f'(0) \) exists iff \(x^{a-1}\sin(x^{-c}) \to 0 \) as \(x \to 0 \). In the previous proof we know that \(f'(0) \) exists if and only if \(a - 1 > 0 \). Also, \(f'(0) = 0 \).

14. Let \(f \) be a differentiable real function defined in \((a, b)\). Prove that \(f \) is convex if and only if \(f' \) is monotonically increasing. Assume next that \(f''(x) \) exist for every \(x \in (a, b) \), and prove that \(f \) is convex if and only if \(f''(x) \geq 0 \) for all \(x \in (a, b) \).

15. Suppose \(a \in R^1, f \) is a twice-differentiable real function on \((a, \infty)\), and \(M_0, M_1, M_2 \) are the least upper bounds of \(|f(x)|, |f'(x)|, |f''(x)|\), respectively, on \((a, \infty)\). Prove that

\[
M_1^2 \leq 4M_0M_2.
\]

Hint: If \(h > 0 \), Taylor’s theorem shows that

\[
f'(x) = \frac{1}{2h} [f(x + 2h) - f(x)] - hf''(\xi)
\]

for some \(\xi \in (x, x + 2h) \). Hence

\[
|f'(x)| \leq hM_2 + \frac{M_0}{h}.
\]

To show that \(M_1^2 = 4M_0M_2 \) can actually happen, take \(a = -1 \), define

\[
f(x) = \begin{cases}
2x^2 - 1 & (-1 < x < 0), \\
\frac{x^2 - 1}{x^2 + 1} & (0 \leq x < \infty),
\end{cases}
\]

and show that \(M_0 = 1, M_1 = 4, M_2 = 4 \). Does \(M_1^2 \leq 4M_0M_2 \) hold for vector-valued functions too?

Proof: Suppose \(h > 0 \). By using Taylor’s theorem:

\[
f(x + h) = f(x) + hf'(x) + \frac{h^2}{2} f''(\xi)
\]
for some $x < \xi < x + 2h$. Thus

$$h|f'(x)| \leq |f(x + h)| + |f(x)| + \frac{h^2}{2}|f''(\xi)|$$

$$h|f'(x)| \leq 2M_0 + \frac{h^2}{2}M_2.$$

$$h^2M_2 - 2h|f'(x)| + 4M_0 \geq 0 \quad (*)$$

Since equation $(*)$ holds for all $h > 0$, its determinant must be non-positive.

$$4|f'(x)|^2 - 4M_2(4M_0) \leq 0$$

$$|f'(x)|^2 \leq 4M_0M_2$$

$$(M_1)^2 \leq 2M_0M_2$$

Note: There is a similar exercise:

Suppose $f(x)(-\infty < x < +\infty)$ is a twice-differentiable real function, and

$$M_k = \sup_{-\infty < x < +\infty} |f^{(k)}(x)| < +\infty \quad (k = 0, 1, 2).$$

Prove that $M_1^2 \leq 2M_0M_2$.

Proof of Note:

$$f(x + h) = f(x) + f'(x)h + \frac{f''(\xi_1)}{2}h^2$$

$(x < \xi_1 < x + h$ or $x > \xi_1 > x + h)$ (*)

$$f(x - h) = f(x) - f'(x)h + \frac{f''(\xi_2)}{2}h^2$$

$(x - h < \xi_2 < x$ or $x - h > \xi_2 > x)$ (**)

(*) minus (**):

$$f(x + h) - f(x - h) = 2f'(x)h + \frac{h^2}{2}(f''(\xi_1) - f''(\xi_2)).$$

11
\[
2h|f'(x)| \leq |2hf'(x)|
\]
\[
2h|f'(x)| \leq |f(x + h)| + |f(x - h)| + \frac{h^2}{2}(|f''(\xi_1)| + |f''(\xi_2)|)
\]
\[
2h|f'(x)| \leq 2M_0 + h^2 M_2
\]
\[
M_2 h^2 - 2|f'(x)|h + 2M_0 \geq 0
\]

Since this equation holds for all \(h \), its determinant must be non-positive:

\[
4|f'(x)|^2 - 4M_2(2M_0) \leq 0,
\]
\[
|f'(x)|^2 \leq 2M_0M_2
\]

Thus
\[
M_1^2 \leq 2M_0M_2
\]

16. Suppose \(f \) is twice-differentiable on \((0, \infty)\), \(f'' \) is bounded on \((0, \infty)\), and \(f(x) \to 0 \) as \(x \to \infty \). Prove that \(f'(x) \to 0 \) as \(x \to \infty \). Hint: Let \(a \to \infty \) in Exercise 15.

Proof: Suppose \(a \in (0, \infty) \), and \(M_0, M_1, M_2 \) are the least upper bounds of \(|f(x)|, |f'(x)|, |f''(x)| \) on \((a, \infty)\). Hence, \(M_1^2 \leq 4M_0M_2 \). Let \(a \to \infty, M_0 = \sup |f(x)| \to 0 \). Since \(M_2 \) is bounded, therefore \(M_1^2 \to 0 \) as \(a \to \infty \). It implies that \(\sup |f'(x)| \to 0 \) as \(x \to \infty \).

17. Suppose \(f \) is a real, three times differentiable function on \([-1, 1]\), such that
\[
f(-1) = 0, f(0) = 0, f(1) = 1, f'(0) = 0.
\]
Prove that \(f^{(3)}(x) \geq 3 \) for some \(x \in (-1, 1) \).
Note that equality holds for \(\frac{1}{2}(x^3 + x^2) \).
Hint: Use Theorem 5.15, with $\alpha = 0$ and $\beta = 1, -1$, to show that there exist $s \in (0, 1)$ and $t \in (-1, 0)$ such that

$$f^{(3)}(s) + f^{(3)}(t) = 6.$$

Proof: By Theorem 5.15, we take $\alpha = 0, \beta = 1$,

$$f(1) = f(0) + f'(0) + \frac{f''(0)}{2} + \frac{f^{(3)}(s)}{6}$$

where $s \in (0, 1)$. Take $\alpha = 0, \text{and} \beta = -1$,

$$f(-1) = f(0) - f'(0) + \frac{f''(0)}{2} - \frac{f^{(3)}(t)}{6}$$

where $t \in (-1, 0)$. Thus

$$1 = \frac{f''(0)}{2} + \frac{f^{(3)}(s)}{6}, s \in (0, 1) \quad (*)$$

$$0 = \frac{f''(0)}{2} - \frac{f^{(3)}(s)}{6}, s \in (-1, 0) \quad (**)$$

Equation (*) - equation (**):

$$\frac{f^{(3)}(s)}{6} + \frac{f^{(3)}(t)}{6}, s \in (0, 1), t \in (-1, 0).$$

$$f^{(3)}(s) + f^{(3)}(t) = 6, \quad s, t \in (-1, 1).$$

$$f^{(3)}(x) \geq 3 \quad \text{for some} \quad x \in (-1, 1).$$

Theorem 5.15: Suppose f is a real function on $[a, b]$, n is a positive integer, $f^{(n-1)}$ is continuous on $[a, b]$, $f^{(n)}(t)$ exists for every $t \in (a, b)$. Let α, β be distinct points of $[a, b]$, and define

$$P(t) = \sum_{k=0}^{n-1} \frac{f^{(k)}(\alpha)}{k!}(t - \alpha)^k.$$
Then there exists a point x between α and β such that
\[f(\beta) = P(\beta) + \frac{f(n)(x)}{n!}(\beta - \alpha)^n. \]

18. Suppose f is a real function on $[a, b]$, n is a positive integer, and $f^{(n-1)}$ exists for every $t \in [a, b]$. Let α, β, and P be as in Taylor’s theorem (5.15). Define
\[Q(t) = f(t) - f(\beta) \]
for $t \in [a, b]$, $t \neq \beta$, differentiate
\[f(t) - f(\beta) = (t - \beta)Q(t) \]
n -1 times at $t = \alpha$, and derive the following version of Taylor’s theorem:
\[f(\beta) = P(\beta) + \frac{Q^{(n-1)}(\alpha)}{(n-1)!} (\beta - \alpha)^n. \]

19. Suppose f is defined in $(-1, 1)$ and $f'(0)$ exists. Suppose $-1 < \alpha_n < \beta_n < 1$, $\alpha_n \to 0$, and $\beta_n \to 0$ as $n \to \infty$. Define the difference quotients
\[D_n = \frac{f(\beta_n) - f(\alpha_n)}{\beta_n - \alpha_n} \]
Prove the following statements:
(a) If $\alpha_n < 0 < \beta_n$, then $\lim D_n = f'(0)$.
(b) If $0 < \alpha_n < \beta_n$ and $\{\beta_n/(\beta_n - \alpha_n)\}$ is bounded, then $\lim D_n = f'(0)$.
(c) If f' is continuous in $(-1, 1)$, then $\lim D_n = f'(0)$.
Give an example in which f is differentiable in $(-1, 1)$ (but f' is not continuous at 0) and in which α_n, β_n tend to 0 in such a way that
\[\lim D_n \text{ exists but is different from } f'(0). \]

Proof: For (a):

\[D_n = \frac{f(\beta_n) - f(0)}{\beta_n - \alpha_n} \frac{\beta_n}{\beta_n - \alpha_n} + \frac{f(\alpha_n) - f(0)}{\alpha_n} \frac{-\alpha_n}{\beta_n - \alpha_n} \]

Note that

\[f'(0) = \lim_{n \to \infty} \frac{f(\alpha_n) - f(0)}{\alpha_n} = \lim_{n \to \infty} \frac{f(\beta_n) - f(0)}{\beta_n} \]

Thus for any \(\epsilon > 0 \), there exists \(N \) such that

\[L - \epsilon < \frac{f(\alpha_n) - f(0)}{\alpha_n} < L + \epsilon, \]

\[L - \epsilon < \frac{f(\beta_n) - f(0)}{\beta_n} < L + \epsilon, \]

whenever \(n > N \) where \(L = f'(0) \) respectively. Note that \(\beta_n/(\beta_n - \alpha_n) \) and \(-\alpha_n/(\beta_n - \alpha_n)\) are positive. Hence,

\[\frac{\beta_n}{\beta_n - \alpha_n}(L - \epsilon) < \frac{f(\beta_n) - f(0)}{\beta_n} \frac{\beta_n}{\beta_n - \alpha_n} < \frac{\beta_n}{\beta_n - \alpha_n}(L + \epsilon) \]

\[\frac{-\alpha_n}{\beta_n - \alpha_n}(L - \epsilon) < \frac{f(\alpha_n) - f(0)}{\alpha_n} \frac{-\alpha_n}{\beta_n - \alpha_n} < \frac{-\alpha_n}{\beta_n - \alpha_n}(L + \epsilon) \]

Combine two inequations,

\[L - \epsilon < D_n < L + \epsilon \]

Hence, \(\lim D_n = L = f'(0) \).

For (b): We process as above prove, but note that \(-\alpha_n/(\beta_n - \alpha_n) < 0\).

Thus we only have the following inequations:

\[\frac{\beta_n}{\beta_n - \alpha_n}(L - \epsilon) < \frac{f(\beta_n) - f(0)}{\beta_n} \frac{\beta_n}{\beta_n - \alpha_n} < \frac{\beta_n}{\beta_n - \alpha_n}(L + \epsilon) \]
\[-\frac{\alpha_n}{\beta_n - \alpha_n}(L + \epsilon) < \frac{f(\alpha_n) - f(0)}{\alpha_n} < \frac{\alpha_n}{\beta_n - \alpha_n}(L - \epsilon)\]

Combine them:

\[L - \frac{\beta_n + \alpha_n}{\beta_n - \alpha_n}\epsilon < D_n < L + \frac{\beta_n + \alpha_n}{\beta_n - \alpha_n}\epsilon\]

Note that \(\{\frac{\beta_n}{\beta_n - \alpha_n}\}\) is bounded, ie,

\[|\frac{\beta_n}{\beta_n - \alpha_n}| \leq M\]

for some constant \(M\). Thus

\[|\frac{\beta_n + \alpha_n}{\beta_n - \alpha_n}| = |\frac{2\beta_n}{\beta_n - \alpha_n} - 1| \leq 2M + 1\]

Hence,

\[L - (2M + 1)\epsilon < D_n < L + (2M + 1)\epsilon\]

Hence, \(\lim D_n = L = f'(0)\).

For (c): By using Mean-Value Theorem,

\[D_n = f'(t_n)\]

where \(t_n\) is between \(\alpha_n\) and \(\beta_n\). Note that

\[\min\{\alpha_n, \beta_n\} < t_n < \max\{\alpha_n, \beta_n\}\]

and

\[\max\{\alpha_n, \beta_n\} = \frac{1}{2}(\alpha_n + \beta_n + |\alpha_n - \beta_n|)\]

\[\min\{\alpha_n, \beta_n\} = \frac{1}{2}(\alpha_n + \beta_n - |\alpha_n - \beta_n|)\]

Thus, \(\max\{\alpha_n, \beta_n\} \to 0\) and \(\min\{\alpha_n, \beta_n\} \to 0\) as \(\alpha_n \to 0\) and \(\beta_n \to 0\). By squeezing principle for limits, \(t_n \to 0\). With the continuity of \(f'\), we have

\[\lim D_n = \lim f'(t_n) = f'(\lim t_n) = f'(0)\].
Example: Let f be defined by

$$f(x) = \begin{cases}
 x^2 \sin(1/x) & (x \neq 0), \\
 0 & (x = 0).
\end{cases}$$

Thus $f'(x)$ is not continuous at $x = 0$, and $f'(0) = 0$. Take $\alpha_n = \frac{1}{\pi/2 + 2n\pi}$ and $\beta_n = \frac{1}{2n\pi}$. It is clear that $\alpha_n \to 0$, and $\beta_n \to 0$ as $n \to \infty$. Also,

$$D_n = \frac{-4n\pi}{\pi(\pi/2 + 2n\pi)} \to -\frac{2}{\pi}$$

as $n \to \infty$. Thus, $\lim D_n = -2/\pi$ exists and is different from $0 = f'(0)$.

20.

21.

22. Suppose f is a real function on $(-\infty, \infty)$. Call x a fixed point of f if $f(x) = x$.

(a) If f is differentiable and $f'(t) \neq 1$ for every real t, prove that f has at most one fixed point.

(b) Show that the function f defined by

$$f(t) = t + (1 + e^t)^{-1}$$

has no fixed point, although $0 < f'(t) < 1$ for all real t.

(c) However, if there is a constant $A < 1$ such that $|f'(t)| \leq A$ for all real t, prove that a fixed point x of f exists, and that $x = \lim x_n$, where x_1 is an arbitrary real number and

$$x_{n+1} = f(x_n)$$

for $n = 1, 2, 3, ...$
(d) Show that the process described in (c) can be visualized by the zig-zag path

\[(x_1, x_2) \rightarrow (x_2, x_2) \rightarrow (x_2, x_3) \rightarrow (x_3, x_3) \rightarrow (x_3, x_4) \rightarrow \ldots\]

Proof: For (a): If not, then there exists two distinct fixed points, say \(x\) and \(y\), of \(f\). Thus \(f(x) = x\) and \(f(y) = y\). Since \(f\) is differentiable, by applying Mean-Value Theorem we know that

\[f(x) - f(y) = f'(t)(x - y)\]

where \(t\) is between \(x\) and \(y\). Since \(x \neq y\), \(f'(t) = 1\). This contradicts.

For (b): We show that \(0 < f'(t) < 1\) for all real \(t\) first:

\[f'(t) = 1 + (-1)(1 + e^t)^{-2}e^t = 1 - \frac{e^t}{(1 + e^t)^2}\]

Since \(e^t > 0\)

\[(1 + e^t)^2 = (1 + e^t)(1 + e^t) > 1(1 + e^t) = 1 + e^t > e^t > 0\]

for all real \(t\), thus

\[(1 + e^t)^{-2}e^t > 0\]

\[(1 + e^t)^{-2}e^t < 1\]

for all real \(t\). Hence \(0 < f'(t) < 1\) for all real \(t\).

Next, since \(f(t) - t = (1 - e^t)^{-1} > 0\) for all real \(t\), \(f(t)\) has no fixed point.

For (c): Suppose \(x_{n+1} \neq x_n\) for all \(n\). (If \(x_{n+1} = x_n\), then \(x_n = x_{n+1} = \ldots\) and \(x_n\) is a fixed point of \(f\)).

By Mean-Value Theorem,

\[f(x_{n+1}) - f(x_n) = f'(t_n)(x_{n+1} - x_n)\]
where t_n is between x_n and x_{n+1}. Thus,

$$|f(x_{n+1}) - f(x_n)| = |f'(t_n)|(x_{n+1} - x_n)$$

Note that $|f'(t_n)|$ is bounded by $A < 1$, $f(x_n) = x_{n+1}$, and $f(x_{n+1}) = x_{n+2}$. Thus

$$|x_{n+2} - x_{n+1}| \leq A|x_{n+1} - x_n|$$

$$|x_{n+1} - x_n| \leq CA^{n-1}$$

where $C = |x_2 - x_1|$. For two positive integers $p > q$,

$$|x_p - x_q| \leq |x_p - x_{p-1}| + \ldots + |x_{q+1} - x_q|$$

$$= C(A^{q-1} + A^{q-2} + \ldots + A^{p-2})$$

$$\leq \frac{CA^{q-1}}{1 - A}.$$

Hence

$$|x_p - x_q| \leq \frac{CA^{q-1}}{1 - A}.$$

Hence, for any $\epsilon > 0$, there exists $N = \lceil \log_A \frac{\epsilon}{C(1-A)} \rceil + 2$ such that $|x_p - x_q| < \epsilon$ whenever $p > q \geq N$. By Cauchy criterion we know that $\{x_n\}$ converges to x. Thus,

$$\lim_{n \to \infty} x_{n+1} = f(\lim_{n \to \infty} x_n)$$

since f is continuous. Thus,

$$x = f(x).$$

x is a fixed point of f.

For (d): Since $x_{n+1} = f(x_n)$, it is trivial.
25. Suppose \(f \) is twice differentiable on \([a, b]\), \(f(a) < 0 \), \(f(b) > 0 \), \(f'(x) \geq \delta > 0 \), and \(0 \leq f''(x) \leq M \) for all \(x \in [a, b] \). Let \(\xi \) be the unique point in \((a, b)\) at which \(f(\xi) = 0 \).

Complete the details in the following outline of **Newton’s method** for computing \(\xi \).

(a) Choose \(x_1 \in (\xi, b) \), and define \(\{x_n\} \) by

\[
x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}.
\]

Interpret this geometrically, in terms of a tangent to the graph of \(f \).

(b) Prove that \(x_{n+1} < x_n \) and that

\[
\lim_{n \to \infty} x_n = \xi.
\]

(c) Use Taylor’s theorem to show that

\[
x_{n+1} - \xi = \frac{f''(t_n)}{2f'(x_n)}(x_n - \xi)^2
\]

for some \(t_n \in (\xi, x_n) \).

(d) If \(A = \frac{M}{2\delta} \), deduce that

\[
0 \leq x_{n+1} - \xi \leq \frac{1}{A}[A(x_1 - \xi)]^{2^n}.
\]

(Compare with Exercise 16 and 18, Chap. 3)

(e) Show that Newton’s method amounts to finding a fixed point of the function \(g \) defined by

\[
g(x) = x - \frac{f(x)}{f'(x)}.
\]

How does \(g'(x) \) behave for \(x \) near \(\xi \)?

(f) Put \(f(x) = x^{1/3} \) on \((-\infty, \infty)\) and try Newton’s method. What happens?
Proof: For (a): You can see the picture in the following URL: http://archives.math.utk.edu/visual.calculus/3/newton.5/1.html.

For (b): We show that $x_n \geq x_{n+1} \geq \xi$. (induction). By Mean-Value Theorem, $f(x_n) - f(\xi) = f'(c_n)(x_n - \xi)$ where $c_n \in (\xi, x_n)$. Since $f'' \geq 0$, f' is increasing and thus

$$\frac{f(x_n)}{x_n - \xi} = f'(c_n) \leq f'(x_n) = \frac{f(x_n)}{x_n - x_{n+1}}$$

$$f(x_n)(x_n - \xi) \leq f(x_n)(x_n - x_{n+1})$$

Note that $f(x_n) > f(\xi) = 0$ since $f' \geq \delta > 0$ and f is strictly increasing. Thus,

$$x_n - \xi \leq x_n - x_{n+1}$$

$$\xi \leq x_{n+1}$$

Note that $f(x_n) > 0$ and $f'(x_n) > 0$. Thus $x_{n+1} < x_n$. Hence,

$$x_n > x_{n+1} \geq \xi.$$

Thus, $\{x_n\}$ converges to a real number ζ. Suppose $\zeta \neq \xi$, then

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Note that $\frac{f(x_n)}{f'(x_n)} > \frac{f(\xi)}{\delta}$. Let $\alpha = \frac{f(\xi)}{\delta} > 0$, be a constant. Thus,

$$x_{n+1} < x_n - \alpha$$

for all n. Thus, $x_n < x_1 - (n - 1)\alpha$, that is, $x_n \to -\infty$ as $n \to \infty$. It contradicts. Thus, $\{x_n\}$ converges to ξ.

For (c): By using Taylor’s theorem,

$$f(\xi) = f(x_n) + f'(x_n)(\xi - x_n) + \frac{f''(t_n)}{2(x_n - \xi)^2}$$

$$0 = f(x_n) + f'(x_n)(\xi - x_n) + \frac{f''(t_n)}{2(x_n - \xi)^2}$$
\[0 = \frac{f(x_n)}{f'(x_n)} - x_n + \xi + \frac{f''(t_n)}{2f'(x_n)}(x_n - \xi)^2\]
\[x_{n+1} - \xi = \frac{f''(t_n)}{2f'(x_n)}(x_n - \xi)^2\]

where \(t_n \in (\xi, x_n)\).

For (d): By (b) we know that \(0 \leq x_{n+1} - \xi\) for all \(n\). Next by (c) we know that
\[x_{n+1} - \xi = \frac{f''(t_n)}{2f'(x_n)}(x_n - \xi)^2\]

Note that \(f'' \leq M\) and \(f' \geq \delta > 0\). Thus
\[x_{n+1} - \xi \leq A(x_n - \xi)^2 \leq \frac{1}{A}(A(x_1 - \xi))^2n\]

by the induction. Thus,
\[0 \leq x_{n+1} - \xi \leq \frac{1}{A}[A(x_1 - \xi)]^2n.\]

For (e): If \(x_0\) is a fixed point of \(g(x)\), then \(g(x_0) = x_0\), that is,
\[x_0 - \frac{f(x_0)}{f'(x_0)} = x_0\]
\[f(x_0) = 0.\]

It implies that \(x_0 = \xi\) and \(x_0\) is unique since \(f\) is strictly increasing. Thus, we choose \(x_1 \in (\xi, b)\) and apply Newton’s method, we can find out \(\xi\). Hence we can find out \(x_0\).

Next, by calculating
\[g'(x) = \frac{f(x)f''(x)}{f'(x)^2}\]
\[0 \leq g'(x) \leq f(x)\frac{M}{\delta^2}.\]

As \(x\) near \(\xi\) from right hand side, \(g'(x)\) near \(f(\xi) = 0\).
For (f): \(x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = -2x_n\) by calculating. Thus,

\[x_n = (-2)^{n-1}x_1\]

for all \(n\), thus \(\{x_n\}\) does not converges for any choice of \(x_1\), and we cannot find \(\xi\) such that \(f(\xi) = 0\) in this case.

26. Suppose \(f\) is differentiable on \([a, b]\), \(f(a) = 0\), and there is a real number \(A\) such that \(|f'(x)| \leq A|f(x)|\) on \([a, b]\). Prove that \(f(x) = 0\) for all \(x \in [a, b]\). Hint: Fix \(x_0 \in [a, b]\), let

\[M_0 = \sup |f(x)|, M_1 = \sup |f'(x)|\]

for \(a \leq x \leq x_0\). For any such \(x\),

\[|f(x)| \leq M_1(x_0 - a) \leq A(x_0 - a)M_0.\]

Hence \(M_0 = 0\) if \(A(x_0 - a) < 1\). That is, \(f = 0\) on \([a, x_0]\). Proceed.

Proof: Suppose \(A > 0\). (If not, then \(f = 0\) on \([a, b]\) clearly.) Fix \(x_0 \in [a, b]\), let

\[M_0 = \sup |f(x)|, M_1 = \sup |f'(x)|\]

for \(a \leq x \leq x_0\). For any such \(x\),

\[f(x) - f(a) = f'(c)(x - a)\]

where \(c\) is between \(x\) and \(a\) by using Mean-Value Theorem. Thus

\[|f(x)| \leq M_1(x - a) \leq M_1(x_0 - a) \leq A(x_0 - a)M_0\]

Hence \(M_0 = 0\) if \(A(x_0 - a) < 1\). That is, \(f = 0\) on \([a, x_0]\) by taking \(x_0 = a + \frac{1}{2A}\). Repeat the above argument by replacing \(a\) with \(x_0\), and note that \(\frac{1}{2A}\) is a constant. Hence, \(f = 0\) on \([a, b]\).
27. Let \(\phi \) be a real function defined on a rectangle \(R \) in the plane, given by \(a \leq x \leq b, \alpha \leq y \leq \beta \). A solution of the initial-value problem

\[
y' = \phi(x, y), \quad y(a) = c \quad (\alpha \leq c \leq \beta)
\]

is, by definition, a differentiable function \(f \) on \([a, b] \) such that \(f(a) = c \), \(\alpha \leq f(x) \leq \beta \), and

\[
f'(x) = \phi(x, f(x)) \quad (a \leq x \leq b)
\]

Prove that such a problem has at most one solution if there is a constant \(A \) such that

\[
|\phi(x, y_2) - \phi(x, y_1)| \leq A|y_2 - y_1|
\]

whenever \((x, y_1) \in R\) and \((x, y_2) \in R\).

Hint: Apply Exercise 26 to the difference of two solutions. Note that this uniqueness theorem does not hold for the initial-value problem

\[
y' = y^{1/2}, \quad y(0) = 0
\]

which has two solutions: \(f(x) = 0 \) and \(f(x) = x^2/4 \). Find all other solutions.

Proof: Suppose \(y_1 \) and \(y_2 \) are solutions of that problem. Since

\[
|\phi(x, y_2) - \phi(x, y_1)| \leq A|y_2 - y_1|
\]

\(y(a) = c, \ y'_1 = \phi(x, y_1), \) and \(y'_2 = \phi(x, y_2) \), by Exercise 26 we know that \(y_1 - y_2 = 0, \ y_1 = y_2 \). Hence, such a problem has at most one solution.

Note: Suppose there is initial-value problem

\[
y' = y^{1/2}, \ y(0) = 0.
\]
If \(y^{1/2} \neq 0 \), then \(y^{1/2} dy = dx \). By integrating each side and noting that \(y(0) = 0 \), we know that \(f(x) = x^2/4 \). With \(y^{1/2} = 0 \), or \(y = 0 \). All solutions of that problem are \(f(x) = 0 \) and \(f(x) = x^2/4 \).

Why the uniqueness theorem does not hold for this problem? One reason is that there does not exist a constant \(A \) satisfying

\[|y'_1 - y'_2| \leq A |y_1 - y_2| \]

if \(y_1 \) and \(y_2 \) are solutions of that problem. (since \(2/x \to \infty \) as \(x \to 0 \) and thus \(A \) does not exist).

28. Formulate and prove an analogous uniqueness theorem for systems of differential equations of the form

\[y'_j = \phi_j(x, y_1, \ldots, y_k), \quad y_j(a) = c_j \quad (j = 1, \ldots, k) \]

Note that this can be rewritten in the form

\[\mathbf{y}' = \phi(x, \mathbf{y}), \quad \mathbf{y}(a) = \mathbf{c} \]

where \(\mathbf{y} = (y_1, \ldots, y_k) \) ranges over a \(k \)-cell, \(\phi \) is the mapping of a \((k+1)\)-cell into the Euclidean \(k \)-space whose components are the function \(\phi_1, \ldots, \phi_k \), and \(\mathbf{c} \) is the vector \((c_1, \ldots, c_k)\). Use Exercise 26, for vector-valued functions.

Theorem: Let \(\phi_j(j = 1, \ldots, k) \) be real functions defined on a rectangle \(R_j \) in the plane given by \(a \leq x \leq b, \alpha_j \leq y_j \leq \beta_j \).

A **solution** of the initial-value problem

\[y'_j = \phi(x, y_j), \quad y_j(a) = c_j \quad (\alpha_j \leq c_j \leq \beta_j) \]
is, by definition, a differentiable function f_j on $[a, b]$ such that $f_j(a) = c_j$, $\alpha_j \leq f_j(x) \leq \beta_j$, and

$$f_j'(x) = \phi_j(x, f_j(x)) \quad (a \leq x \leq b)$$

Then this problem has at most one solution if there is a constant A such that

$$|\phi_j(x, y_{j2}) - \phi_j(x, y_{j1})| \leq A|y_{j2} - y_{j1}|$$

whenever $(x, y_{j1}) \in R_j$ and $(x, y_{j2}) \in R_j$.

Proof: Suppose y_1 and y_2 are solutions of that problem. For each components of y_1 and y_2, say y_{1j} and y_{2j} respectively, $y_{1j} = y_{2j}$ by using Exercise 26. Thus, $y_1 = y_2$.

29. Specialize Exercise 28 by considering the system

$$y'_j = y_{j+1} \quad (j = 1, ..., k - 1),$$

$$y'_k = f(x) - \sum_{j=1}^{k} g_j(x)y_j$$

where $f, g_1, ..., g_k$ are continuous real functions on $[a, b]$, and derive a uniqueness theorem for solutions of the equation

$$y^{(k)} + g_k(x)y^{(k-1)} + ... + g_2(x)y' + g_1(x)y = f(x),$$

subject to initial conditions

$$y(a) = c_1, y'(a) = c_1, ..., y^{(k-1)}(a) = c_k.$$

Theorem: Let R_j be a rectangle in the plain, given by $a \leq x \leq b$, $\min y_j \leq y_j \leq \max y_j$. (since y_j is continuous on the compact set, say
\[a, b \], we know that \(y_j \) attains minimal and maximal.) If there is a constant \(A \) such that
\[
\begin{align*}
|y_{j+1,1} - y_{j+1,2}| &\leq A|y_{j,1} - y_{j,2}| \\
|\sum_{j=1}^{k} g_j(x)(y_{j,1} - y_{j,2})| &\leq A|y_{k,1} - y_{k,2}|
\end{align*}
\]
whenever \((x, y_{j,1}) \in R_j\) and \((x, y_{j,2}) \in R_j\).

Proof: Since the system \(y_1', ..., y_k' \) with initial conditions satisfies a fact that there is a constant \(A \) such that \(|y_1' - y_2'| \leq A|y_1 - y_2|\), that system has at most one solution. Hence,
\[
y^{(k)} + g_k(x)y^{(k-1)} + ... + g_2(x)y' + g_1(x)y = f(x),
\]
with initial conditions has at most one solution.