1. Let m be a countably additive measure defined for all sets in a σ-algebra \mathcal{M}.

If A and B are two sets in M with $A \subset B$, then $mA \leq mB$. This property is called \textit{monotonicity}.

\textbf{Proof:} $B = A \cup (A - B)$. A and $A - B$ are disjoint. Since m is a countably additive measure, $mB = mA + m(A - B)$. Note that m is nonnegative, and $m(A - B) \geq 0$. Hence $mA \leq mB$.

2. Let $< E_n >$ be any sequence of sets in \mathcal{M}. Then $m(\bigcup E_n) \leq \sum mE_n$. [Hint: Use Proposition 1.2.] This property of a measure is called \textit{countable subadditivity}.

\textbf{Proof:} By Proposition 1.2 on page 17, since \mathcal{M} is a σ-algebra, there is a sequence $< B_n >$ of sets in \mathcal{M} such that $B_n \cap B_m = \phi$ for $n \neq m$ and

$$\bigcup_{i=1}^{\infty} B_i = \bigcup_{i=1}^{\infty} E_i.$$

Since m is a countably additive measure and $B_i \subset E_i$ for all i, by Problem 3.1 I have that

$$m(\bigcup E_n) = m(\bigcup B_n) = \sum mB_n \leq \sum mE_n.$$

3. If there is a set A in \mathcal{M} such that $mA < \infty$, then $m\phi = 0$.

\textbf{Proof:} Note that $A = A \cup \phi$ and A and ϕ are disjoint, and thus

$$mA = mA + m\phi.$$

Since $mA < \infty$, $m\phi = 0$ precisely.
4.

5. Let A be the set of rational numbers between 0 and 1, and let $\{I_n\}$ be a finite collection of open intervals covering A. Then $\sum l(I_n) \geq 1$.

Proof 1: (due to Meng-Gen Tsai) Since $0 \in A$, there is an open interval J_1 in $\{I_n\}$ such that $0 \in J_1$. Let $J_1 = (a_1, b_1)$. Note that $a_1 < 0$ and $b_1 > 0$. If $b_1 \geq 1$, then

$$\sum l(I_n) \geq l(J_1) = b_1 - a_1 \geq 1.$$

Suppose not. If a_1 is rational, then I can find an open interval $J_2 \in \{I_n\}$ such that $a_1 \in J_2$. If a_1 is irrational, I consider the following cases.

Case 1. There is an open interval J_2 such that $a_1 \in J_2$.

Case 2. There is an open interval J_2 such that a_1 is the right endpoint of J_2.

Case 3. Otherwise.

I claim that Case 3 is impossible. Consider the following subcollection

$$K_1, ..., K_m$$

where $K_i \in \{I \in I_n|a_1 < x \text{ for all } x \in I\}$. Thus I select a open interval $K_0 = (x, y)$ nearest a_1. Hence $(a_1, x) \cap Q$ cannot be covered by any elements of $\{I_n\}$, a contradiction.

Hence we can find J_2 in **Case 1** and **Case 2**. Continue the process to find out $J_3,$ Since $\{I_n\}$ is a finite covering of A, this process can be done in finite steps. Hence

$$\sum l(I_n) \geq \sum J_n = \sum (a_{n+1} - a_n) = a_m - a_1.$$

Note that $a_m \geq 1$ and $a_n \leq 0$. Hence $\sum l(I_n) \geq 1$.

2
Proof 2: (due to Shin-Yi Lee) \(A \) is contained in \(\bigcup I_k \), then \(\overline{A} \) is contained in \(\bigcup \overline{I_k} = \bigcup \overline{I_k} \). So, \(|A| = 1 \leq | \bigcup I_k | \leq \sum | I_k | \).

Where \(| . |\) in Zygmund’s book is the same as \(m(.)\) in Royden’s book if I do not misunderstand.

Proof 3: (due to ljl) (1) We can suppose that \(I_n \) are disjoint; otherwise, if \(I_m \cap I_n \) is not empty, then we can use \(I = I_m \cap I_n \) to replace \(I_m \) and \(I_n \). \(I \) is also an interval, and also covers \(A \), and will make \(\sum l(I_n) \) smaller. Hence if the sum is still \(\geq 1 \) after our adjustment, the original one is \(\geq 1 \) surely.

(2) Now \(I_n \) are disjoint, so we can suppose that \(I_n = (a_n, b_n) \), \(n = 1, ..., N \) with \(a_i < b_i \leq a_{i+1} < b_{i+1} \) for \(i = 1, ..., N - 1 \).

(3) It is easy to show that \(b_i = a_{i+1} \) (or that collection cannot cover \(A \)). Hence \(\sum l(I_n) = b_N - a_1 \). Also, it is easy to show that \(a_1 < 0 \) and \(b_N > 1 \). Proved.

6. Given any set \(A \) and any \(\epsilon > 0 \), prove that there is an open set \(O \) such that \(A \subset O \) and \(m^*O \leq m^*A + \epsilon \). Also, prove that there is a \(G \in G_\delta \) such that \(A \subset G \) and \(m^*A = m^*G \).

Proof: Note that

\[
m^*A = \inf_{A \subset \bigcup I_n} \sum l(I_n).
\]

where \(I_n \) are open intervals by the definition of the outer measure. Let \(O = \bigcup I_n \). \(O \) is also open. For any \(\epsilon > 0 \), there exists \(\{I_n\} \) such that

\[
m^*A + \epsilon \geq \sum l(I_n).
\]

By Proposition 1 and Problem 2,

\[
\sum l(I_n) = \sum m^*(I_n) \geq m^*(\bigcup I_n) = m^*O.
\]
Combine them and I have $m^*O \leq m^*A + \epsilon$.

By previous conclusion, for any $n \in N$ there is an open set O_n such that $A \subset O_n$ and $m^*O_n \leq m^*A + \frac{1}{n}$. Take $G = \bigcap O_n$. Hence

$$m^*G \leq m^*O_n \leq m^*A + \frac{1}{n}$$

for all $n \in N$. Therefore

$$m^*G \leq m^*A.$$

Note that $A \subset O_n$ for all n, that is, $A \subset G$, that is,

$$m^*A \leq m^*G.$$

Hence

$$m^*A = m^*G.$$

7. Prove that m^* is translation invariant.

Proof: Let E be a set. Consider the countable collections $\{I_n\}$ of open intervals that cover E. Then $\{I'_n\}$ covers $E+y$ where $I'_n = I_n + y$. Note that I'_n is also an open interval, and

$$l(I'_n) = l(I_n).$$

Hence for any $\epsilon > 0$ there is $\{I_n\}$ such that $m^*E + \epsilon > \sum l(I_n)$. Thus,

$$m^*E + \epsilon > \sum l(I_n) = \sum l(I'_n) \geq m^*(E + y),$$

that is,

$$m^*E \geq m^*(E + y).$$

Similarly (regard E as $(E + y) - y$),

$$m^*E \leq m^*(E + y).$$

Hence $m^*E = m^*(E + y)$, that is, m^* is translation invariant.
9. Show that if E is a measurable set, then each translate $E + y$ of E is also measurable.

Proof: Since E is a measurable set, for each set A I have

$$m^*A = m^*(A \cap E) + m^*(A \cap E^c).$$

Suppose $x \in A \cap (E + y)$, then

$$x \in A \cap (E + y) \iff x \in A \text{ and } x \in (E + y)$$
$$\iff x \in A \text{ and } x - y \in E$$
$$\iff x - y \in (A - y) \text{ and } x - y \in E$$
$$\iff x - y \in (A - y) \cap E$$
$$\iff x \in (A - y) \cap E + y.$$

Hence $A \cap (E + y) = (A - y) \cap E + y$; thus

$$m^*(A \cap (E + y)) = m^*((A - y) \cap E + y)$$
$$= m^*((A - y) \cap E)$$

(since Problem 3.7). Similarly, $A \cap (E + y)^c = (A - y) \cap E^c + y$; thus

$$m^*(A \cap (E + y)^c) = m^*((A - y) \cap E^c + y)$$
$$= m^*((A - y) \cap E^c)$$

Hence

$$m^*(A \cap (E + y)) + m^*(A \cap (E + y)^c)$$
$$= m^*((A - y) \cap E) + m^*((A - y) \cap E^c)$$
$$= m^*(A - y)$$
$$= m^*A$$

for each set A (since E is measurable). Therefore, $E + y$ is also measurable.
10.

11. Show that the condition $mE_1 < \infty$ is necessary in Proposition 14 by giving a decreasing sequence $< E_n >$ of measurable set with $\phi = \bigcap E_n$ and $mE_n = \infty$ for each n.

Solution: Let $$E_n = \bigcup_{k=1}^{n} A_k$$ where $A_k = (k - \frac{1}{4}, k + \frac{1}{4})$.

12. Let $< E_n >$ be a sequence of disjoint measurable sets and A any set. Then

$$m^*(A \cap \bigcup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} m^*(A \cap E_i).$$

Proof: By Lemma 9,

$$m^*(A \cap \bigcup_{i=1}^{n} E_i) = \sum_{i=1}^{n} m^*(A \cap E_i).$$

Since

$$A \cap \bigcup_{i=1}^{\infty} E_i \subset A \cap \bigcup_{i=1}^{n} E_i$$

for all n,

$$m^*(A \cap \bigcup_{i=1}^{\infty} E_i) \geq m^*(A \cap \bigcup_{i=1}^{n} E_i) = \sum_{i=1}^{n} m^*(A \cap E_i).$$

for all n. Hence,

$$m^*(A \cap \bigcup_{i=1}^{\infty} E_i) \geq \sum_{i=1}^{\infty} m^*(A \cap E_i).$$

Similarly, by using the fact that m^* is nonnegative, I have

$$m^*(A \cap \bigcup_{i=1}^{\infty} E_i) \leq \sum_{i=1}^{\infty} m^*(A \cap E_i).$$

Therefore I got the conclusion.
13. Prove Proposition 15. [Hints: a. Show that for $m^*E < \infty$, (i) \Rightarrow (ii) \Leftrightarrow (vi) (cf. Proposition 5).

b. Use (a) to show that for arbitrary sets E, (i) \Rightarrow (ii) \Rightarrow (iv) \Rightarrow (i).

c. Use (b) to show that (i) \Rightarrow (iii) \Rightarrow (v) \Rightarrow (i).]

Proposition 15: Let E be a given set. Then the following five statements are equivalent:

i. E is measurable.

ii. Given $\epsilon > 0$, there is an open set $O \supset E$ with $m^*(O - E) < \epsilon$.

iii. Given $\epsilon > 0$, there is a closed set $F \subset E$ with $m^*(E - F) < \epsilon$.

iv. There is a G in G_δ with $E \subset G$, $m^*(G - E) = 0$.

v. There is an F in F_σ with $F \subset E$, $m^*(E - F) = 0$.

If m^*E is finite, the above statements are equivalent to:

vi. Given $\epsilon > 0$, there is a finite union U of open intervals such that $m^*(U \triangle E) < \epsilon$.

Proof of (a):

(i) \Rightarrow (ii): Since E is measurable, by Proposition 5 there is an open set O such that $E \subset O$ and $m^*O \leq m^*E + 2\epsilon$. By Lemma 9

$$m^*O = m^*(O - E) + m^*(O \cap E) = m^*(O - E) + m^*E$$

since $E \subset O$). Since m^*E is finite, $m^*(O - E) \leq 2\epsilon < \epsilon$.

(ii) \Rightarrow (vi): Take $\epsilon = 1/n$ for all $n \in N$, there is an open set $O_n \subset E$ with $m^*(O - E) < 1/n$. Take $G = \bigcap O_n$; G is open and $G \in G_\delta$. And

$$m^*(G - E) \leq m^*(O_n - E) < 1/n$$

for all $n \in N$. Hence $m^*(G - E) = 0$.

(vi) \Rightarrow (ii): If not, there is a real $\epsilon_0 > 0$ such that

$$m^*(O - E) \geq \epsilon_0$$
for any open set O. Note that G is the intersection of countable open set, write $G = \bigcap O_n$. Hence
\[
m^*(\bigcap_{k=1}^{n} O_k - E) \geq \epsilon_0
\]
for all n. Hence
\[
m^*(\bigcap_{k=1}^{\infty} O_k - E) \geq \epsilon_0,
\]
a contradiction.

14.