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This note is for some exercises related to quotient space from the book Linear Algebra, 4th edition

by Stephen H. Friedberg, Arnold J. Insel and Lawrence E. Spence.

Given a linear transformation T : V → W , we want to ”rectify” T to be an isomorphsim so that

we can identify V with W , given their bases. To make T onto, it’s easy to restrict the co-domain

to be R(T ), since elements not in R(T ) has nothing to do with the linear transformation. Let the

kernel of T be Z. If T is not one to one, Z 6= {0}. To make T one-to-one, we regard the set Z as

a single element. We want to define a new linear function T with T (Z) = 0. The domain of T is

actually the quotient space V/Z = {v + Z : v ∈ V }.

1 Problem 31 in Sec 1.3

Let W be a vector subspace of a vector space V over F . For any v ∈ V the set {v}+W = {v+w :

w ∈ W} is called the coset of W containing v. It is customary to denote the coset by v+W rather

than {v}+W .

(a) Prove that v +W is a subspace of V if and only if v ∈ W .

Sol. We have

v +W is a subspace of V ⇐⇒ 0 ∈ v +W ⇐⇒ (−v) ∈ W ⇐⇒ v ∈ W �

(b) Prove that v1 +W = v2 +W if and only if v1 − v2 ∈ W .

Sol. We have

v1 +W = v2 +W ⇐⇒ v1 = v1 + 0 = v2 + w for some w ∈ W ⇐⇒ v1 − v2 ∈ W �

(c) Show that if v1 +W = v′1 +W and v2 +W = v′2 +W , then

(v1 +W ) + (v2 +W ) = (v′1 +W ) + (v′2 +W )

and for all a ∈ F ,

a(v1 +W ) = a(v′1) +W

Sol. We have v1 − v′1 ∈ W and v2 − v′2 ∈ W . Hence

(v1 +W ) + (v2 +W ) = (v1 + v2) +W

= ((v′1 + v′2) + w) +W for some w ∈ W
= (v′1 + v′2) +W �
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The scalar part is trivial.

(d) Prove that the set S is a vector space with the operations defined in (c). This vector space is

called the quotient space of V modulo W and is denoted by V/W .

Sol. The closedness of scalar and addition is ensured by (c). The identity is (W ). The inverse

of any vector (v +W ) is (−v +W ). �

2 Exercise 40 in Sec 2.1

Let V be a vector space and W be a subspace of V . Define the mapping η : V → V/W by

η(v) = v +W for v ∈ V .

(a) Prove that η is a linear transformation from V onto v/W and that N(η) = W .

Sol. We have ηav1 + v2 = a(v1 +W ) + (v2 +W ) and for each v ∈ V , v +W = η(v). Also, it’s

trivial that η(v) = v +W = W ⇐⇒ v ∈ W . �

(b) Suppose that V is finite dimensional. Use (a) and the dimension theorem to derive a formula

relating dim(V ), dim(W ) and dim(V/W ). Sol. Using the theorem directly, we have that

dim(V ) = dim(R(η))+ dim(N(η)) = dim(V/W ) + dim(W ). �

3 Exercise 24 in Sec 2.4

Let T : V → Z be a linear transformation of a vector space V onto a vector space Z. Define the

mapping

T = V/N(T )→ Z by T (v +N(T )) = T (v)

for any coset v +N(T ) in V/N(T ).

(a) Prove that T is well-defined; that is, prove that if v +N(T ) = v′ +N(T ), then T (v) = T (v′).

Sol. T (v)− T (v′) = T (v − v′) = 0, since v − v′ ∈ N(T ) by the assumption. �

(b) Prove that T is linear.

Sol. trivial.

(c) Prove that T is an isomorphism.

Sol. It suffices to show that T is injective and onto. For 1-1, we have that T (v + N(T )) =

0 ⇐⇒ T (v) = 0 ⇐⇒ v ∈ N(T ) ⇐⇒ (v + N(T )) = N(T ). For onto, we have that for

z ∈ Z, say T (v) = z since T is onto. Then we have that T (v +N(T )) = z. �

(d) Prove that T = T ◦ η.

Sol. Trivially take the definition of these functions.

Remark. Note that T is called the canonical map in the context of abstract algebra.
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