Exercises of Quotient Space

He-Zhe Lin

January 24, 2021

This note is for some exercises related to quotient space from the book *Linear Algebra*, 4th edition by Stephen H. Friedberg, Arnold J. Insel and Lawrence E. Spence.

Given a linear transformation $T: V \to W$, we want to "rectify" T to be an isomorphism so that we can identify V with W, given their bases. To make T onto, it's easy to restrict the co-domain to be R(T), since elements not in R(T) has nothing to do with the linear transformation. Let the kernel of T be Z. If T is not one to one, $Z \neq \{0\}$. To make T one-to-one, we regard the set Z as a single element. We want to define a new linear function \overline{T} with $\overline{T}(Z) = 0$. The domain of \overline{T} is actually the quotient space $V/Z = \{v + Z : v \in V\}$.

1 Problem 31 in Sec 1.3

Let W be a vector subspace of a vector space V over F. For any $v \in V$ the set $\{v\} + W = \{v + w : w \in W\}$ is called the coset of W containing v. It is customary to denote the coset by v + W rather than $\{v\} + W$.

(a) Prove that v + W is a subspace of V if and only if $v \in W$. Sol. We have

v + W is a subspace of $V \iff 0 \in v + W \iff (-v) \in W \iff v \in W$

(b) Prove that $v_1 + W = v_2 + W$ if and only if $v_1 - v_2 \in W$. Sol. We have

$$v_1 + W = v_2 + W \iff v_1 = v_1 + 0 = v_2 + w$$
 for some $w \in W \iff v_1 - v_2 \in W$

(c) Show that if $v_1 + W = v'_1 + W$ and $v_2 + W = v'_2 + W$, then

$$(v_1 + W) + (v_2 + W) = (v'_1 + W) + (v'_2 + W)$$

and for all $a \in F$,

$$a(v_1 + W) = a(v_1') + W$$

Sol. We have $v_1 - v'_1 \in W$ and $v_2 - v'_2 \in W$. Hence

$$(v_1 + W) + (v_2 + W) = (v_1 + v_2) + W$$

= $((v'_1 + v'_2) + w) + W$ for some $w \in W$
= $(v'_1 + v'_2) + W$

The scalar part is trivial.

(d) Prove that the set S is a vector space with the operations defined in (c). This vector space is called the quotient space of V modulo W and is denoted by V/W. Sol. The closedness of scalar and addition is ensured by (c). The identity is (W). The inverse of any vector (v + W) is (-v + W).

2 Exercise 40 in Sec 2.1

Let V be a vector space and W be a subspace of V. Define the mapping $\eta : V \to V/W$ by $\eta(v) = v + W$ for $v \in V$.

- (a) Prove that η is a linear transformation from V onto v/W and that $N(\eta) = W$. Sol. We have $\eta a v_1 + v_2 = a(v_1 + W) + (v_2 + W)$ and for each $v \in V$, $v + W = \eta(v)$. Also, it's trivial that $\eta(v) = v + W = W \iff v \in W$.
- (b) Suppose that V is finite dimensional. Use (a) and the dimension theorem to derive a formula relating $\dim(V)$, $\dim(W)$ and $\dim(V/W)$. Sol. Using the theorem directly, we have that $\dim(V) = \dim(R(\eta)) + \dim(N(\eta)) = \dim(V/W) + \dim(W)$.

3 Exercise 24 in Sec 2.4

Let $T: V \to Z$ be a linear transformation of a vector space V onto a vector space Z. Define the mapping

$$\overline{T} = V/N(T) \to Z$$
 by $\overline{T}(v + N(T)) = T(v)$

for any coset v + N(T) in V/N(T).

- (a) Prove that \overline{T} is well-defined; that is, prove that if v + N(T) = v' + N(T), then T(v) = T(v'). Sol. T(v) - T(v') = T(v - v') = 0, since $v - v' \in N(T)$ by the assumption.
- (b) Prove that \overline{T} is linear. Sol. trivial.
- (c) Prove that \overline{T} is an isomorphism. Sol. It suffices to show that \overline{T} is injective and onto. For 1-1, we have that $\overline{T}(v + N(T)) = 0 \iff T(v) = 0 \iff v \in N(T) \iff (v + N(T)) = N(T)$. For onto, we have that for $z \in Z$, say T(v) = z since T is onto. Then we have that $\overline{T}(v + N(T)) = z$.
- (d) Prove that $T = \overline{T} \circ \eta$.

Sol. Trivially take the definition of these functions.

Remark. Note that \overline{T} is called the canonical map in the context of abstract algebra.